Beyond Design: Microstrip Coplanar Waveguides


Reading time ( words)

The classic coplanar waveguide (CPW) is formed by a microstrip conductor strip separated from a pair of ground planes pours, all on the same layer, affixed to a dielectric medium. In the ideal case, the thickness of the dielectric is infinite. But in practice, it is thick enough so that electromagnetic fields die out before they get out of the substrate. A variant of the coplanar waveguide is formed when a ground reference plane is provided on the opposite side of the dielectric. This is referred to a conductor-backed or grounded CPW. CPWs have been used for many years in RF and microwave design as they reduce radiation loss, at extremely high frequencies, compared to traditional microstrip. And now, as edge rates continue to rise, they are coming back into vogue. In this month’s column, I will look at how conformal field theory can be used to model the electromagnetic effects of microstrip coplanar waveguides.

Simplistically, space has three dimensions. Picturing a box, we observe the three dimensions of width, height and depth (x,y,z). But, there is an obvious fourth dimension–time. The box will only exist for a certain period of time. These three spatial dimensions plus the temporal dimension are referred to as space-time. But in the intricate world of quantum physics, there can be as many as 26 dimensions used to model the complexities of quantum fields.

In 1921, Theodor Kaluza, a mathematician, proposed that our intuition has misled us and suggested that space-time actually has five dimensions. Kaluza adapted Einstein’s General Theory of Relativity that was formulated to the familiar four dimensions, and rewrote it to apply to five. Surprisingly, these terms corresponded precisely to the description of electromagnetism that James Clerk Maxwell had published decades before. By adding the extra dimension, Kaluza had unified gravitation and electromagnetism–two of the fundamental forces of nature.

This fifth dimension is not apparent to us at the macro scale, as it is a minuscule curling spatial dimension bound by the other larger dimensions. The analogy generally used, to help wrap your head around the concept, is to consider the large dimension to be like a drinking straw. At distant scales of magnification, it appears to be just a straight line. But close up, it has a perpendicular circumference that is curling around the central line of the dimension. This is the compactified small dimension. This fifth dimension represents the varying electric and magnetic fields that radiate at right angles to the central line. 

To read this entire column, which appeared in the March 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Why Does the PCB Industry Still Use Gerber?

11/07/2019 | Karel Tavernier, Ucamco
Every so often, I hear technologists ask why so many PCB designers still use Gerber. That is a fair question. Ucamco has over 35 years of experience in developing and supporting cutting-edge software and hardware solutions for the global PCB industry. Our customers—small, medium, and large PCB fabricators—include the electronics industry’s leading companies, and many of them have been with us for over 30 years. We are dedicated to our industry and excellence in everything we do, which includes our custodianship of the Gerber format.

Happy Anniversary, Gerber Format: Looking Ahead to Digital Innovation

01/25/2019 | Patrick McGoff, Mentor, a Siemens business
This year, we celebrate the 55th anniversary of the introduction of the Gerber machine language format. We can thank H. Joseph Gerber, the man who took manual PCB design to the next level with the automated photoplotter, for giving us this format in 1964. Gerber immigrated to the United States in 1940 with his mother following the death of his father during the Holocaust. Gerber started Gerber Scientific Instrument Company in 1948 to commercialize his first patented invention—the variable scale.

Thermal Management Materials: Easing the Decision-Making Process

08/02/2018 | Jade Bridges, Electrolube
There are many different types of thermally conductive materials, and choosing between them will be dictated by production requirements and application design, as well as critical performance factors that must be achieved.



Copyright © 2020 I-Connect007. All rights reserved.