Quantum Waltz of Electrons Hints at the Next Generation of Chips


Reading time ( words)

EPFL researchers have successfully measured some of the quantum properties of electrons in two-dimensional semiconductors. This work in the field of spintronics could one day lead to chips that are not only smaller but that also generate less heat.

A group of spintronics researchers at EPFL is using new materials to reveal more of the many capabilities of electrons. The field of spintronics seeks to tap the quantum properties of “spin,” the term often used to describe one of the fundamental properties of elementary particles – in this case, electrons. This is among the most cutting-edge areas of research in electronics today.

Researchers working in the Laboratory of Nanoscale Electronics and Structures (LANES), which is run by Professor Andras Kis, were able to quantify these quantum properties for a category of two-dimensional semiconductors called transition metal dichalcogenides, or TMDCs. Their research projects, which were published recently in ACS Nano and today in Nature Communications, confirm that materials like graphene (C), molybdenite (MoS2) and tungsten diselenide (WSe2) offer, either alone or by combining some of their characteristics, new perspectives for the field of electronics – perspectives that could ultimately lead to smaller chips that generate less heat.

“With the methods we’ve recently developed, we’ve shown that it is possible to access the spin in these TMDC materials, quantify it and use it to introduce new functionalities,” says Kis.

This all takes place at an extremely small scale. In order to access these quantum properties, the researchers must work with high quality materials. “If we want to examine certain characteristics of electrons, including their energy, we need to be able to watch them move over relatively long distances without there being too much dispersion or disruption,” explains Kis.

In the form of waves

The researchers’ method allows them to obtain samples of sufficient quality both to observe how electrons move around in the form of waves and to quantify their energy.

But the LANES team was also able to access another quantum property. Spins of electrons and holes in this type of a 2D semiconductor can be in one of two states, which are conventionally described as being oriented upward – spin up – or downward – spin down. Their energy will be slightly different in each of these two states. That’s called spin splitting, and the EPFL researchers have measured it for the first time for electrons in TMDC materials.

In the second publication, the researchers wrote about how they used the spin splitting in a TMDC in order to introduce polarized spin currents in graphene without using a magnetic field.

These discoveries are a step forward for the emerging field of spintronics and make it increasingly likely that a different property of charge carriers – i.e. spin, in addition to the electrical charge – will play a role in tomorrow’s electronic devices.

Share


Suggested Items

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T

Finessing Miniaturized Magnetics into the Microelectronics Mix

06/20/2016 | DARPA
A newly-announced DARPA program is betting that unprecedented on-chip integration of workhorse electronic components, such as transistors and capacitors, with less-familiar magnetic components with names like circulators and isolators, will open an expansive pathway to more capable electromagnetic systems.



Copyright © 2017 I-Connect007. All rights reserved.