Designers Notebook: Strategies for High-Density PCBs


Reading time ( words)

As hand-held and portable electronic products and their circuit boards continue to shrink in size, the designer is faced with solving the physical differences between traditional printed board fabrication and what’s commonly referred to as high-density interconnect (HDI) processing. The primary driver for HDI is the increased complexity of the more advanced semiconductor package technology. These differences can be greater than one order of magnitude in interconnection density.

Semiconductor Packaging

Although the development of array-configured packaging for ICs has alleviated circuit routing difficulty somewhat, product miniaturization and performance goals are not easily achieved. To further complicate the PCB design process, many companies furnishing multiple die or multi-functional semiconductor packaging are forced to significantly increasing I/O while reducing both contact size and pitch. This higher I/O and finer pitch evolution is due in part to the OEM need for more capability in an ever-shrinking space. Further complicating traditional PCB design, some companies are doing away with some or all traditional semiconductor packaged semiconductors.

System-in-package (SiP), for example, whether die stack or package-on-package, has rapidly penetrated most major market segments. This includes consumer electronics, mobile, automotive, computing, networking, communications, and medical electronics. The benefits of SiP will differ for various market segments but they can share some very common elements: shorter time to market, smaller size and lower cost. Area efficiency (more functionality in a single package footprint) has resulted in the strongest initial penetration in consumer electronics. These mixed-function SiP solutions have become commonplace in small form factor systems, such as mobile phones, memory cards, and other portable electronics products and the number has been increasing rapidly.

In contrast, it has become common for developers to procure bare, uncased die elements that are configured for face-down (flip-chip) mounting. Although flip-chip was originally considered for relatively low I/O die, the redistribution of the peripheral located contact sites to a more uniform area array format has enabled the commercial use of larger and much higher I/O die elements. Regarding flip-chip mounting, interconnection from die element to the PCB is commonly achieved with alloy bumps, spheres or, for very fine pitch applications, raised copper pillar contacts that, although very small, are compatible with a conventional reflow soldering processes.

To read this entire article, which appeared in the November 2017 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Insulectro Works to Bridge the Fabricator/Designer Gap

12/19/2019 | Barry Matties, I-Connect007
Barry Matties sat down with Insulectro’s Megan Teta and Mike Creeden to discuss trends they see in the materials market and how they’re working to bridge the gap between fabrication and design, including helping designers understand what they can do to make a board more manufacturable.

Designing for Complex PCBs

12/12/2019 | I-Connect007 Editorial Team
The I-Connect007 editorial team sat down with Freedom CAD’s Scott Miller to talk about the industry’s demand for more increasingly complex PCBs, and the challenges this presents. They also discuss Freedom CAD’s in-house training programs, the company’s recent book authored by Scott, and why communication is such an important tool in a PCB designer’s toolbox.

AltiumLive Frankfurt 2019: Happy Holden Keynote

12/12/2019 | Pete Starkey, I-Connect007
Nobody left early! Altium had wisely kept Happy Holden’s keynote presentation on “PCB Trends that Will Impact Your Future” until the end of the final day of the AltiumLive 2019 European PCB Design Summit in Frankfurt, Germany. Pete Starkey presents the highlights of Happy's presentation.



Copyright © 2020 I-Connect007. All rights reserved.