Mentor’s HyperLynx Automates SERDES Channel Design


Reading time ( words)

Mentor recently released the newest version of its HyperLynx signal integrity software. This version may be the first SI tool in the industry to fully automate SERDES design channel validation. I spoke recently with Chuck Ferry, product marketing manager with Mentor, about the new HyperLynx and some of the new serial link design capabilities that customers have been demanding.

Andy Shaughnessy: Some of the newer HyperLynx capabilities are focused on the users’ SERDES design challenges. Part of the problem with SERDES seems to be that the standards for SERDES have been playing catch-up for a while, according to quite a few design engineers. What do you see going on in the SERDES standards space?

Chuck Ferry: SERDES-related standards have been evolving very quickly. The number of protocols for high-speed serial data has increased drastically in the last few years. Often with each new generation of protocol, the data rates are doubling. Some of the challenges hardware designers face with the recent protocols are related to differences in the types of analysis that are required and the results they must understand to properly determine if a interface will pass or fail the requirements for that given protocol. For example, the new standards rely on new metrics such as channel operating margin (COM) to determine the pass or fail criteria of the interconnect.

Shaughnessy: What does it take to validate high-speed serial interface from chip-to-chip in a large system? It seems that it would be a real issue with a data center or cellular base station.

Ferry: To validate a high-speed serial link end-to-end per modern protocol every aspect of the signal interconnect between the chips must be modeled accurately including the IC packages, trace interconnect, as well as the characteristics of the drivers and receivers, including complex equalization schemes and optimization capabilities associated with those.

Shaughnessy: What questions are you hearing from hardware designers who are tackling these types of designs?

Ferry: The latest version of HyperLynx's new capabilities provides solutions to system-level designers with hard questions along these lines. They’re wondering, “Are my implementations possible with various physical constraints and selected board materials? What if I don't have models for my driver or don't know what driver will be, but I just know the standard that it needs to comply to? How can I quickly validate an interface with this specific protocol standard? How can I model this long interconnect channel with 3D features in a reasonable amount of time? How can I find problems in my channel design before it's actually full routed?”

To read this entire article, which appeared in the March 2018 issue of Design007 Magazine, click here.

Visit I-007eBooks to download your copies of Mentor's micro eBooks today:

The Printed Circuit Designer’s Guide to…Signal Integrity by Example

The Printed Circuit Designer’s Guide to…Power Integrity by Example


Share


Suggested Items

PCB Design Challenges: A Package Designer’s Perspective

09/17/2018 | Bill Acito, Cadence Design Systems
The challenges faced by the PCB designers of today are significant. If we examine the breadth of designs, we find ever-increasing data rates and more high-speed signal routing that drive additional challenges meeting signal-quality requirements, including reflection signal loss and crosstalk issues. At the same time, designers are being asked to complete designs in shorter cycle times and in smaller form factors. They must come up with new and more complex routing strategies to better control impedance and crosstalk. Manual implementation is often time-consuming and prone to layout errors.

Managing the Challenges of Flex and Rigid-Flex Design

09/12/2018 | Dave Wiens, Mentor, a Siemens Business
PCB designers working with flex or rigid-flex technology face many potential risks that can derail a project and cause costly design failures. As the name implies, flex and rigid-flex designs comprise a combination of rigid and flexible board technologies made up of multiple layers of flexible circuit substrates, attached internally and/or externally to one or more rigid boards. These combinations provide flexibility for the PCB designer working on dense designs that require a specific form factor. Rigid-flex allows the PCB design team to cost-efficiently apply greater functionality to a smaller volume of space, while providing the mechanical stability required by most applications.

Mentor Preparing for Next-Gen PCB Designers

08/20/2018 | Andy Shaughnessy, Design007 Magazine
Millennials are the future of our industry. What does this mean for the PCB design community? How do we attract more of these smart young people to the world of PCB design? I asked Paul Musto, director of marketing for Mentor’s Board Systems Division, to explain the company’s initiatives aimed at drawing more young people into PCB design



Copyright © 2018 I-Connect007. All rights reserved.