PCB Design Challenges: A Package Designer’s Perspective


Reading time ( words)

The challenges faced by the PCB designers of today are significant. If we examine the breadth of designs, we find ever-increasing data rates and more high-speed signal routing that drive additional challenges meeting signal-quality requirements, including reflection signal loss and crosstalk issues. At the same time, designers are being asked to complete designs in shorter cycle times and in smaller form factors. They must come up with new and more complex routing strategies to better control impedance and crosstalk. Manual implementation is often time-consuming and prone to layout errors. Designers have an increased need for pre-layout simulation to evaluate the design early on and establish routing strategies.

Designers are faced with conflicting requirements. The PCB designer is expected to do more with less space. The overall density of designs is increasing. Balanced against cost constraints, the PCB designer may leverage high-density interconnect (HDI) technology to compress the design into the available space, which in turn increases the likelihood of signal integrity issues. Cost pressures may force the PCB designer to reduce layer count or, at the very least, stay within the layer count that has been budgeted.

The PCB designer finds himself in a constant battle to converge on a design that meets all the design constraints. EDA vendors have provided a suite of various tools and automation to assist with the manufacturing constraints and physical and signal integrity physics of the design—breakout tools, route feasibility and estimation, timing and delay match, HDI-compliant design, and flex and embedded component design. Without a doubt, the challenges are significant for the PCB designer. If the constraints cannot be surmounted with technology, perhaps the solution is to work smarter.

So, rather than looking at some of the advanced additive technologies and other PCB manufacturing capabilities that could enable us to work at a significantly finer pitch, albeit at a higher cost, let’s focus on those capabilities that allow us to work smarter. As an IC packaging EDA engineer, I argue that working collaboratively with the system design and packaging engineers is one way we can enable denser designs that are completed faster, while still meeting signal integrity and power integrity requirements. Doing so requires more pre-planning and pre-analysis of the design, specifically looking at breakout patterns from the high pin-count devices, the critical signal typologies and routing schemes, and an up-front analysis of the critical signals within the design.

To read this entire article, which appeared in the August 2018 issue of Design007 Magazine, click here.

Share


Suggested Items

Judy Warner: AltiumLive’s Second Year to be Even Better Than First

09/19/2018 | Andy Shaughnessy, Design007
Last year, Altium launched its AltiumLive event with shows in San Diego and Munich, Germany. This year, the event has expanded to include an extra day of classes. Altium is gearing up for the San Diego event in early October and the German show in January 2019. I recent spoke with Judy Warner, director of community engagement for Altium, about what designers should expect at both shows, and how the company can build on the success of the 2017 events going into the future.

Mentor Preparing for Next-Gen PCB Designers

08/20/2018 | Andy Shaughnessy, Design007 Magazine
Millennials are the future of our industry. What does this mean for the PCB design community? How do we attract more of these smart young people to the world of PCB design? I asked Paul Musto, director of marketing for Mentor’s Board Systems Division, to explain the company’s initiatives aimed at drawing more young people into PCB design

Advanced Stackup Planning with Impedance, Delay and Loss Validation

08/02/2018 | Yuriy Shlepnev, Simberian
A typical PCB design usually starts with the material selection and stackup definition—the stackup planning or design exploration stage. How reliable are the data provided by the material vendors and PCB manufacturers? Can we use these data to predict trace width and spacing for the target trace impedance or to calculate delays or evaluate the loss budget?



Copyright © 2018 I-Connect007. All rights reserved.