Designers Notebook: Embedding Components, Part 7—Semiconductor Placement and Termination Methodologies


Reading time ( words)

Progress in developing high-density embedded-component substrate capability has accelerated through the cooperation and joint development programs between many government and industry organizations and technical universities. In addition to these joint development programs, several independent laboratories and package assembly service providers have developed a number of proprietary processes for embedding the uncased semiconductor elements.

Developers have found that embedding the semiconductors on an inner layer of the PCB or package substrate directly in line with active and passive components mounted on the outer surface ensures that the conductor interface between related components will be minimized.

There are a number of methods used for interconnecting uncased semiconductor components. Semiconductor elements can be mounted onto the core substrate in the faceup orientation or facedown. When placing the die with the active surface of the die facing up, termination will likely adopt copper-plated microvia methodology. Meanwhile, facedown placement will enable the direct interface to land patterns provided on the designated layer of the circuit structure

As noted in Part 6 of this series, the semiconductor fabrication process initially furnishes the die with aluminum bond pads on its perimeter for the traditional wire-bond interface process.

Faceup Semiconductor Termination

Both gold wire-bond and ribbon-bond processes may be applied for completing the die-to-substrate interface. In preparation for this process, a cavity is provided in the substrate (typical of that described in Part 4) to provide clearance for both the die attach and terminal interface. The faceup attachment method traditionally adopts an adhesive material (liquid epoxy or film) for initially attaching the die to the substrate’s surface. Termination lands are positioned on the upper layer of the cavity in line with the wire-bond termination sites on the die element.

To read this entire column, which appeared in the January issue of Design007 Magazine, click here.

Share

Print


Suggested Items

Just Ask Happy: Calculating Trace Temps in a Vacuum

07/07/2020 | I-Connect007 Editorial Team
We asked for you to send in your questions for Happy Holden, and you took us up on it! The questions you've posed run the gamut, covering technology, the worldwide fab market, and everything in between. Enjoy.

Book Excerpt: Thermal Management With Insulated Metal Substrates, Part 3

07/01/2020 | I-Connect007 Editorial Team
The following is an excerpt from Chapter 3 of "The Printed Circuit Designer's Guide to... Thermal Management With Insulated Metal Substrates," written by Ventec International Group’s Didier Mauve and Ian Mayoh. In this free eBook, the authors provide PCB designers with the essential information required to understand the thermal, electrical, and mechanical characteristics of insulated metal substrate laminates.

Book Excerpt: Thermal Management With Insulated Metal Substrates, Part 2

06/16/2020 | I-Connect007 Editorial Team
The following is an excerpt from the second half of Chapter 1 of "The Printed Circuit Designer's Guide to... Thermal Management With Insulated Metal Substrates," written by Ventec International Group’s Didier Mauve and Ian Mayoh. In this free eBook, the authors provide PCB designers with the essential information required to understand the thermal, electrical, and mechanical characteristics of insulated metal substrate laminates.



Copyright © 2020 I-Connect007. All rights reserved.