Connect the Dots: Everything You Wanted to Know About Electromagnetic Interference

Reading time ( words)

EMI is another of those TLAs (three-letter acronyms) that the PCB industry is notorious for. You hear it all the time, referring to electromagnetic interference. The devices we create are, in the context of this conversation, bundles of boards, chips, and cables that produce and are affected by EMI. When current flows through wires, traces, or circuits, some of the energy is propagated through the air in the form of electromagnetic radiation. This also takes place within a closed design—creating disturbance voltages throughout the conductors in your device.

Though most prevalent in devices with longer interconnects and at higher frequencies above 50MHz, nothing operates at 100% electromagnetic compatibility. This means every device is going to generate at least some amount of EMI.

If enough EMI radiates from a device, it will interfere with the operation of other electronic systems operating in the vicinity. That’s why they ask you to turn off your cellphones on airplanes and the reason grandpa made your dad turn off the radio in his room when it was time for Ed Sullivan on TV.

Keeping an Eye on EMI
There are two main concerns with EMI that you need to consider. You should first determine how much EMI your device is generating and radiating to the environment. Different operational environments bring with them unique tolerances for EMI. An electronic device that is part of a billionaire’s spaceship near other devices on board would have a much lower EMI tolerance than a moisture evaporator operating in the middle of a desert.

Everyone from the FCC to the DoD to a slew of international regulatory bodies are at hand to dictate the amount of interference that a device can give off, depending on its intended use. These regulations have been put in place for personal safety and to ensure an electronic device will be able to carry out its function long term.

It’s also important to determine your device’s inherent ability to operate in the presence of EMI, regardless of whether it is EMI-created within the device or bombarding it from external sources. Too much exposure to interference can negatively impact the functionality of some systems and you will need to design shielding, grounding, or other protection.

Poor PCB design is many times the culprit when it comes to intolerable levels of EMI. The issues that often cause problems can be traced to design flaws that cause interference among the traces, circuits, vias, PCB coils, and other elements.

Limiting the EMI in a PCB layout can be an effective method for reducing emissions, meeting FCC regulations, and keeping your design signals clean so the system works as expected.

Designing With EMI in Mind
Here are a few items to consider during the planning and schematic stages of your design that will set you on the right path.

  • Choose SMD components over through-hole parts. Generally, the leads on the through-hole parts create higher levels of inductance and thus opportunity for EMI.
  • Maximize ground area, so signals can disperse more easily with more area. If you need to keep the area of your ground plane as small as possible, create a multi-layer PCB.
  • Design with multilayers—add a ground plane on the layer directly below the external signals (2 and n-1). The presence of these planes near the signal will effectively reduce the return path, keep signals clean, and limit EMI emission.
  • Connecting decoupling or bypass capacitors to these planes offers another effective technique for reducing EMI because of the short and logical return paths created.
  • If you are using split planes to avoid having too many ground planes in your design, be sure they are only connected at a single point to avoid creating loops that effectively become antennas that radiate EMI.
  • In multi-layer PCBS, use solid ground planes rather than hashed planes to reduce impedance levels.
  • Limit the operating current and/or the rise times of the signals to help reduce larger fluctuations in current offering lower EMI emission rates.
  • Match the impedance on signals. This is a critical practice of design especially at higher signal speeds that will reduce the opportunity for signal reflection, harmonics, ringing, and overshooting digital signals—all of which increase the EMI radiation.

Don’t let yourself be surprised by EMI. It can create issues with your projects that could result in delays, budget overrun, and missed deadlines. Considering EMI during the pre-planning stage of your PCB design can help save you time and effort in the prototyping and testing phases.

This column originally appeared in the January 2022 issue of Design007 Magazine.


Suggested Items

Master the Art of Communication With Manufacturers

06/30/2022 | Kyle Burk, KBJ Engineering
As mentioned in the May issue of Design007 Magazine, design is performed, at times, in a vacuum. But it doesn’t have to be that way. Whenever circumstances allow, design should be performed by communicating with all stakeholders throughout the design process, hence the emphasis on the word with in DWM. Communication can occur through personal correspondence such as email and voice conversations or through more formal design meetings—in person or through videoconferencing. No matter which means of communication you prefer, it’s important to communicate early and often with stakeholders involved in the downstream processes as you bring your project to realization.

Altimade Puts Designers and Manufacturers Together

06/24/2022 | Andy Shaughnessy, Design007 Magazine
Despite all of the talk about the need for communication between designers and manufacturers, many PCB designers still do not talk with their manufacturers for a variety of reasons. Altium and MacroFab aim to change this dynamic. In this interview, Ted Pawela, chief ecosystem officer of Altium and head of Altium’s Nexar Business Unit, and MacroFab CEO Misha Govshteyn, discuss the new Altimade manufacturing service that Altium is introducing in partnership with MacroFab. Ted and Misha provide an overview of the Altimade process, how it links designers to fabricators, assembly providers, and component distributors, and they explain how it could pave the way for true design with manufacturing, or DWM.

The Survey Said: Why Don’t You Know Your Fabricator?

06/23/2022 | I-Connect007 Editorial Team
When we want to find out what challenges our readers are facing, we just ask. And they don’t mind sharing—the good, the bad, and the ugly. In a recent survey, we asked our PCB designer readers, “Why don’t you know who is going to manufacture your boards?” Here are some of more interesting replies we received, edited slightly for clarity. Do you see yourself in these replies?

Copyright © 2022 I-Connect007. All rights reserved.