Thermal Characterization of LEDs: Enabling the Upcoming Lighting Revolution


Reading time ( words)

According to a June 2012 report from the Climate Group, many commercially available, outdoor light-emitting diode (LED) products offer high-quality light, durability, and significant electricity savings in the range of 50 to 70%. More European cities are adopting LED streetlights because LEDs can save energy costs, while exceeding local lighting standards. They last 50,000 to 100,000 hours, change little in color, and have a failure rate of around 1%, compared, for example, to up to 10% for ceramic metal halide fixtures over a similar time period. LED streetlights are a gateway technology--when LED designers solve the current problems of reducing cost and thermal challenges, they’ll be paving the way for wider adoption and the energy-saving potential of LEDs.

Thermal management is one of the more complex areas of LED system design. And until a few years ago, the methods and technology to scientifically characterize the thermal behavior of the component, as well as its systems and subsystems, were not available. Instead, most engineers calculate their thermal needs from data sheets published by component manufacturers. Understandably, having data available to engineers on the specific thermal mechanics of LED-based devices within the system in which they are being used could be a huge step forward for future lighting designs.

This article describes a method that combines hardware measurement (a thermal transient tester), and computational fluid dynamics (CFD) software to provide high measurement throughput, which enables systems integrators to verify a vendor’s thermal resistance data during design and to test incoming commercial off-the-shelf parts before they are introduced into production. This data can be used during the design and product development phase to accurately capture the thermal response of an LED lighting system.

Read the full article here.


Editor's Note: This article originally appeared in the October 2014 issue of The PCB Design Magazine.

Share


Suggested Items

Simon Fried: Additive Manufacturing Through Printed Electronics

10/17/2018 | Barry Matties, Publisher, I-Connect007
Simon Fried, president of Nano Dimension, discusses how the company has taken the additive manufacturing process to the next level through printed electronics. He also shares his thoughts on the growing demand for 3D circuits, as well as how this could potentially be a game-changer for PCB designers.

Managing the Challenges of Flex and Rigid-Flex Design

09/12/2018 | Dave Wiens, Mentor, a Siemens Business
PCB designers working with flex or rigid-flex technology face many potential risks that can derail a project and cause costly design failures. As the name implies, flex and rigid-flex designs comprise a combination of rigid and flexible board technologies made up of multiple layers of flexible circuit substrates, attached internally and/or externally to one or more rigid boards. These combinations provide flexibility for the PCB designer working on dense designs that require a specific form factor. Rigid-flex allows the PCB design team to cost-efficiently apply greater functionality to a smaller volume of space, while providing the mechanical stability required by most applications.

Chuck Bauer Discusses the Future of Packaging

09/05/2018 | I-Connect007 Editorial Team
When we decided to cover the future of PCB packaging, we knew we would have to interview Charles Bauer, Ph.D., owner of TechLead Corporation. Chuck recently spoke with Happy Holden, Andy Shaughnessy and Barry Matties about current trends in packaging, the need for product designers and manufacturers to communicate, and why no matter how cool the technology is, cost is still king.



Copyright © 2018 I-Connect007. All rights reserved.