Oxide Alternatives to Enhance LPI Adhesion to Copper


Reading time ( words)

Introduction

The printed wiring board industry has experienced issues with liquid photoimageable solder masks under various conditions. LPI breakdown or lifting near the copper-mask interface typifies a common defect seen when fabricators institute electroless-nickel immersion gold (ENIG) as a final finish. The aggressive nature of the ENIG process is a particular nuisance for some aqueous-based LPIs. Simply scrubbing the copper surface prior to soldermask application is often not an effective adhesion promotion mechanism for LPI and ENIG. (Please note that not all LPIs exhibit this problem.) A number of factors contribute to mask adhesion issues including acrylate content of the LPI, degree of cross-linking, mask thickness, and adhesion strength of the mask to the surface. Regardless, surface topography plays a unique role in enhancing the adhesion of the LPI. Before exploring surface topography further, it is important to understand outside influences such as ENIG and its effect on adhesion.

Influence of Plating Processes on LPI Adhesion

The electroless-nickel immersion gold plating process places significant stress on the liquid soldermask’s adhesion to the circuit board surface. Generally, there are several things the fabricator can do to ensure proper solder mask adhesion. Of course, proper surface prep is one of them. However, these other critical success factors are important (and will be presented in a future column):

  • Thoroughly pre-cleaning of the substrate;
  • Ink layer thickness;
  • Complete pre-drying of the LPISM;
  • Exposure energy;
  • Correct adjustment of the developing parameters; and
  • Control of the corresponding final curing conditions.

Surface Prep of Copper Prior to Soldermask

In Figure 1, the surface copper of the PWB was prepared with aluminum oxide. Even though the surface roughness appears sufficient, the fabricator experienced issues with LPI breakdown after ENIG. Figure 2 shows the mask peeling from the surface due to marginal adhesion. Most likely, even with less than adequate surface preparation, most surface finishes would not have had such an adverse effect as ENIG.

Read the full column here.


Editor's Note: This column originally appeared in the October 2014 issue of The PCB Magazine.

Share

Print


Suggested Items

Materials for Automotive Applications: Thermal Management Issues

07/02/2020 | Pete Starkey, I-Connect007
For Pete Starkey, the highlight of the recent HDP User Group Automotive Technology Webinar was Alun Morgan’s presentation on materials for automotive applications. This forward-looking informational session covered the latest developments in automotive standards and automotive electronic packaging.

Just Ask Happy: The Future of 3D Printing

06/30/2020 | I-Connect007 Editorial Team
We asked for you to send in your questions for Happy Holden, and you took us up on it! The questions you've posed run the gamut, covering technology, the worldwide fab market, and everything in between. Enjoy.

3D Additive Electronics Manufacturing: Are We Nearing an Inflection Point?

05/28/2020 | Dan Feinberg, I-Connect007
Recently, Dan Feinberg was invited to attend a detailed and broadly informative webinar by nScrypt titled “The Strength of 3D-Printed Electronics," which covered the status and advances in the use of 3D printing for electronic device design and manufacture. nScrypt is an Orlando-based company founded in 2002 that focuses on 3D printing. Here’s what Dan learned from each of the speakers.



Copyright © 2020 I-Connect007. All rights reserved.