Root Cause of Failures in PWB Lamination


Reading time ( words)

Introduction

Understanding the interactions of the materials, oxide treatment, and the lamination process will help you get to the root cause failures in multilayer fabrication.

When troubleshooting multilayer defects, it is necessary to again understand the effect certain process parameters have on quality and reliability. Truly, the quality of a multilayer printed circuit board (prior to desmear/metallization) will depend on several factors that will now be presented.  

Interlaminar Bond Strength

There are several quality aspects of a multilayer PCB that should be measured on a regular basis. One key determinant of the reliability of the multilayer package is the interlaminar bond strength. The interlaminar bond strength is the strength of the heat-resistant bond between the pre-preg and the copper foil. Ideally, one strives for optimum resin flow encapsulation of the pre-preg with the treated copper innerlayer. The stronger the bond between the pre-preg and treated copper, the lower the chance of delamination. Figure 1 shows an example of delamination. In general, heat excursions increased the stress within the bond and that will lead to failures. So the bond between the copper and the resin needs to be as robust as possible.

The simple definition of delamination is, “a separation between plies within a base material, between a base material and a conductive foil, or any other planar separation within a printed board.” Again, we are referring to a separation. (More on blister and laminate voids in another column.)  It is a huge concern that separation of the pre-preg from the copper foil is often misinterpreted for a blister. Indeed it is more serious than that. As an example, higher temperature resin systems may require more adjustments to the printed circuit processes such as: lamination cycle, baking, hole cleaning, drilling and routing. Polyimide resin and cyanate ester are the most commonly used high-temperature resin systems. These resins have Tgs in the 250°C range.

Read the full column here.


Editor's Note: This column originally appeared in the September 2014 issue of The PCB Magazine.

Share


Suggested Items

5G—Generation after Generation

06/22/2018 | Patty Goldman, I-Connect007
If you’re like me, you’ve probably heard of 5G, but you may not understand what all the fuss is about. First, 5G simply means fifth-generation mobile networks. The best way to understand what 5G is about is to understand all the other Gs, like 3G and 4G (we rarely hear about the early Gs!).

PCB Material Toolbox for Today's 3G & 4G Networks and Future High-Speed Needs in 5G

06/21/2018 | Stig Källman, ERICSSON with Happy Holden, I-CONNECT007
The material toolbox idea first came up when I saw the IPC appendix list for standard 1-ply stack-ups. The idea is to make a very simple bill of materials, specifications and notes, and possibly use the same prepreg/resin in the laminate and in the core.

ACE’s AccuWrap Simplifies Multiple Sequential Laminations with Blind Vias

05/29/2018 | Andy Shaughnessy
At DesignCon 2018, I spoke with James Hofer, general manager for Accurate Circuit Engineering, a quick-turn fabricator based in Santa Ana, California. James gave me a preview of AccuWrap, a new type of processing technology that lets designers reduce the amount of copper during sequential laminations while still meeting IPC specs, which should be of great interest to RF designers.



Copyright © 2018 I-Connect007. All rights reserved.