Component Selection for Easier Design and Manufacture of Electronics


Reading time ( words)

“Simplify, simplify, simplify.”

                      —Henry David Thoreau 

Thoreau penned his simple lifestyle mantra more than 150 years ago and it still as valid today as it was when he first captured and recorded his thoughts on paper. He was not the first to extoll the importance of simplicity, but he said it in a memorable way.

Achieving simplicity has been deemed a worthy objective by many philosophers over centuries, and people often profess to seek simplicity in their lives. In the world of high tech, simplicity is arguably one of the foundational objectives of most of the technologies that surround us today. Certainly this is true in terms of how product designers are trying to create interfaces that allow even the most nontechnical users to get what they need from electronic products with a minimum of hassle.

However, that interface simplicity is undergirded by a massively complex electromechanical substructure of circuits, sensors and components. Pop open any high-end electronic device and you will be met by an impressive mass of densely packed components and circuits. Presently, those components are available in a wide array of formats, with a number of different lead shapes and forms along with the device’s mechanical outline. Presently, there are J-leads, I-leads, gull-wing leads, posts, balls and no leads at all. Mechanical outlines are generally square and rectangular, but the bodies can have a wide range of dimensions in X, Y and Z. While area array technology has helped to make things smaller, it has also upped the complexity factor from a design perspective by mixing grids and land shapes and sizes.

Why so many options? It is because there is not, nor has there ever been, a truly coherent approach to the process of selecting package structures for ICs or any other components for that matter. Yes, a roadmap for electronic component lead pitch was introduced with the advent of SMT, and that roadmap said that every next-generation lead pitch should be 80% of the size of the previous generation lead pitch.

Read the full article here.


Editor's Note: This article originally appeared in the November 2014 issue of The PCB Design Magazine.

Share


Suggested Items

Faster Board Speeds Demand Constraint-Driven Design

06/19/2018 | Ralf Bruening, Zuken
Using powerful constraint techniques can be a double-edged sword. While the design process is made much safer by including constraints, it is all too easy to over-constrain the design and make it impossible to complete routing and placement. Even paper design guidelines can make products uneconomic to produce unless a great deal of engineering knowledge is applied during the design.

Making the Most of PCB Materials for 5G Microwave and mmWave Amps

06/13/2018 | John Coonrod, Rogers Corporation
Ready or not, 5G is coming, and it will require the right circuit materials for many different types of high-frequency circuits, including power amplifiers. 5G represents the latest and greatest in wireless technology, and it will be challenging to design and fabricate, starting with the circuit board materials, because it will operate across many different frequencies, such as 6 GHz and below, as well as at millimeter-wave frequencies (typically 30 GHz and above).

Field Trip: CID Class Sees How Flex is Made at Streamline Circuits

06/06/2018 | Kelly Dack, CID+, EPTAC
While I was teaching my CID class for EPTAC in Santa Clara, I learned that we were only a block away from Streamline Circuits. Streamline does a lot of military and aerospace work, as well as communications and industrial electronics. The company manufactures quite a bit of multilayer flex and rigid-flex circuits, in addition to rigid boards. This would make a great field trip for my CID class!



Copyright © 2018 I-Connect007. All rights reserved.