Material Selection for Digital Design

Reading time ( words)

In a previous column, Material Selection for SERDES Design, I pointed out that materials used for the fabrication of the multilayer PCB absorb high frequencies and reduce edge rates and that loss, in the transmission lines, is a major cause of signal integrity issues. But we are not all designing cutting-edge boards, and sometimes we tend to over-specify requirements that can lead to inflated production costs.

In this column, I will look at what types of materials are commonly used for digital design, and how to select an adequate material to minimize costs. Of course, selecting the best possible material will not hurt, but it may blow out the costs.

Olney 1.jpg

Figure 1: Simulated signal propagating through a curved waveguide.

Signals propagate in a vacuum or air at approximately the speed of light. But, as the electromagnetic energy is enveloped in a dielectric material, sandwiched between planes in the PCB medium, it slows down. Figure 1 illustrates a signal propagating through a curved waveguide. This is representative of a typical stripline configuration of a PCB. What needs to be understood is that the signal traces on a PCB simply guide the signal wave, as the electromagnetic energy propagates in the surrounding dielectric material. It is the dielectric material that determines the velocity (v) of propagation of the electromagnetic energy:

 Olney Equation.jpg

Keep in mind that c is the speed of light (in free space) and Er is the dielectric constant of the material (FR-4 is ~4.0). By contrast, the Er of air is 1. Therefore, the velocity of propagation in FR-4 is about half the speed of light or 6 inches per ns. The important concept is that it is the electromagnetic energy that propagates down the transmission line--not electron flow. Electrons flow at about 0.4 inches per second, a snail’s pace by comparison.

Read the full column here.

Editor's Note: This column originally appeared in the August 2014 issue of The PCB Design Magazine.


Suggested Items

Susy Webb: Training the New Generation of Designers

08/02/2018 | Andy Shaughnessy, Design007 Magazine
For years, I’ve been running into Susy Webb at PCB West, where one of the classes she teaches is PCB design basics. I always ask Susy about the class, especially the attendees’ backgrounds. Over the years, her class has begun drawing more and more degreed engineers, with fewer “traditional” PCB designers attending. I asked Susy to discuss the next generation of PCB designers, some of the trends she’s seeing among new PCB designers, and the need for designers to take charge of their own design training, whether their management agrees or not.

Multi-board Design with Altium’s Ben Jordan

07/25/2018 | I-Connect007 Editorial Team
Not too long ago, historically speaking, most electronic products contained only one PCB. But multi-board designs have become almost ubiquitous over the past decade, and EDA software companies are working to improve and simplify the multi-board design process. Editors Andy Shaughnessy and Stephen Las Marias spoke with Ben Jordan, director of product and persona marketing for Altium, about the company’s multi-board design tools, the challenges that customers face, and the numerous trade-offs that designers must contend with while performing multi-board design.

3D Convergence of Multiboard PCB and IC Packaging Design

07/18/2018 | Bob Potock, Zuken
A new generation of 3D multiboard product-level design tools offer major improvements by managing multiboard placement in both 2D and 3D, and enabling co-design of the chip, package and board in a single environment. Multiboard design makes it possible to create and validate a design with any combination of system-on-chips (SOCs), packages, and PCBs as a complete system.

Copyright © 2018 I-Connect007. All rights reserved.