What is DFM, Really?


Reading time ( words)

Okay, so what is DFM, really? The term "design for manufacturability" has been used for many years now, but does everyone really understand this concept?

For instance, do you design for 10%? Do you design for a specific manufacturer’s capabilities, therefore making you less likely to seek alternative fabricators? How are your drawings worded?

In this article, I will be discussing the reality of DFM and what benefits you, the end-user, by embracing these practices.

Why Design For Manufacturability at All?

Good question. Even if you only buy your boards from a single source--if you have qualified the company already and feel you can expect certain press parameters and dielectric constants based on what they have provided you--it is STILL a good idea to at least design with some latitude. If your design is .1 mm lines and spaces there is not a whole lot of room to either expand or decrease the traces to achieve certain impedances. Clearly, when you have to ingress and egress out of tight-pitch components and your design takes you down to .003”/.003” there is NO ROOM at all for an etch compensation, so you are typically quoted by manufacturers as quarter-ounce foil start. This foil is so thin that we need not compensate for a loss at the etcher like the other copper weights.

Again, as I have mentioned before in my columns, the general rule of thumb is that for every half-ounce of starting copper, you give all the metal features an etch compensation of half a mil. Asking for 1 oz. starting copper, for instance, with 0.003”/0.003” will normally be a no-bid as fabricators would be hard-pressed to be able to run with .002” spaces at Image prior to etch. (Attempting to compensate the 0.003” traces for 1 oz. copper with 1 mil will result in 0.002” spaces at Image prior to etch.) So, 0.003”/0.003” is usually the limit.

Read the full article here.


Editor's Note: This article originally appeared in the May 2014 issue of The PCB Design Magazine.

Share


Suggested Items

Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals

06/20/2018 | Dave Lackey and Anaya Vardya, American Standard Circuits
The design process is arguably the most important part of the flex circuit procurement process. The decisions made in the design process will have a lasting impact, for better or worse, throughout the manufacturing cycle. In advance of providing important details about the actual construction of the flex circuit, it is of value to provide some sort of understanding of the expected use environment for the finished product.

Faster Board Speeds Demand Constraint-Driven Design

06/19/2018 | Ralf Bruening, Zuken
Using powerful constraint techniques can be a double-edged sword. While the design process is made much safer by including constraints, it is all too easy to over-constrain the design and make it impossible to complete routing and placement. Even paper design guidelines can make products uneconomic to produce unless a great deal of engineering knowledge is applied during the design.

Making the Most of PCB Materials for 5G Microwave and mmWave Amps

06/13/2018 | John Coonrod, Rogers Corporation
Ready or not, 5G is coming, and it will require the right circuit materials for many different types of high-frequency circuits, including power amplifiers. 5G represents the latest and greatest in wireless technology, and it will be challenging to design and fabricate, starting with the circuit board materials, because it will operate across many different frequencies, such as 6 GHz and below, as well as at millimeter-wave frequencies (typically 30 GHz and above).




Copyright © 2018 I-Connect007. All rights reserved.