What is DFM, Really?


Reading time ( words)

Okay, so what is DFM, really? The term "design for manufacturability" has been used for many years now, but does everyone really understand this concept?

For instance, do you design for 10%? Do you design for a specific manufacturer’s capabilities, therefore making you less likely to seek alternative fabricators? How are your drawings worded?

In this article, I will be discussing the reality of DFM and what benefits you, the end-user, by embracing these practices.

Why Design For Manufacturability at All?

Good question. Even if you only buy your boards from a single source--if you have qualified the company already and feel you can expect certain press parameters and dielectric constants based on what they have provided you--it is STILL a good idea to at least design with some latitude. If your design is .1 mm lines and spaces there is not a whole lot of room to either expand or decrease the traces to achieve certain impedances. Clearly, when you have to ingress and egress out of tight-pitch components and your design takes you down to .003”/.003” there is NO ROOM at all for an etch compensation, so you are typically quoted by manufacturers as quarter-ounce foil start. This foil is so thin that we need not compensate for a loss at the etcher like the other copper weights.

Again, as I have mentioned before in my columns, the general rule of thumb is that for every half-ounce of starting copper, you give all the metal features an etch compensation of half a mil. Asking for 1 oz. starting copper, for instance, with 0.003”/0.003” will normally be a no-bid as fabricators would be hard-pressed to be able to run with .002” spaces at Image prior to etch. (Attempting to compensate the 0.003” traces for 1 oz. copper with 1 mil will result in 0.002” spaces at Image prior to etch.) So, 0.003”/0.003” is usually the limit.

Read the full article here.


Editor's Note: This article originally appeared in the May 2014 issue of The PCB Design Magazine.

Share




Suggested Items

Webinar Review: Thermal Integrity of High-Performance PCB Design

08/01/2022 | Andy Shaughnessy, Design007 Magazine
Electrical and mechanical engineers may be working on the same product development teams, but they speak different languages, and they have completely different objectives. As a result, these folks almost never use the same software tools. But Cadence’s new Celsius Thermal Solver is an exception to the rule. In a new CadenceTECHTALK webinar, “How Static and Dynamic IR Drop Analysis Can Help PCB Designs and Challenges,” product manager Melika Roshandell and SerDes SI/PI engineer Karthik Mahesh Rao explain how the EE and ME can both use the Celsius Thermal Solver to achieve their disparate objectives.

Pulsonix Collision Avoidance to Bring Mechanical Capabilities Into ECAD

05/19/2022 | I-Connect007 Editorial Team
The I-Connect Editorial Team recently spoke with Bob Williams, managing director of Pulsonix. He discussed some of the new features in the upcoming version of the Pulsonix PCB design tool, Version 12, including collision avoidance and other 3D options that allow certain MCAD functions within the ECAD environment.

A Textbook Look: Signal Integrity and Impedance

05/18/2022 | Pete Starkey, I-Connect007
Believing that I knew a bit about signal integrity and controlled impedance, I was pleased to take the opportunity to connect with an educational webinar that I hoped would extend my knowledge. In the event I was surprised at how little I actually knew, and the webinar was an excellent learning opportunity. The webinar was introduced and expertly moderated by Anna Brockman of Phoenix Contact in Germany.



Copyright © 2022 I-Connect007. All rights reserved.