What is DFM, Really?


Reading time ( words)

Okay, so what is DFM, really? The term "design for manufacturability" has been used for many years now, but does everyone really understand this concept?

For instance, do you design for 10%? Do you design for a specific manufacturer’s capabilities, therefore making you less likely to seek alternative fabricators? How are your drawings worded?

In this article, I will be discussing the reality of DFM and what benefits you, the end-user, by embracing these practices.

Why Design For Manufacturability at All?

Good question. Even if you only buy your boards from a single source--if you have qualified the company already and feel you can expect certain press parameters and dielectric constants based on what they have provided you--it is STILL a good idea to at least design with some latitude. If your design is .1 mm lines and spaces there is not a whole lot of room to either expand or decrease the traces to achieve certain impedances. Clearly, when you have to ingress and egress out of tight-pitch components and your design takes you down to .003”/.003” there is NO ROOM at all for an etch compensation, so you are typically quoted by manufacturers as quarter-ounce foil start. This foil is so thin that we need not compensate for a loss at the etcher like the other copper weights.

Again, as I have mentioned before in my columns, the general rule of thumb is that for every half-ounce of starting copper, you give all the metal features an etch compensation of half a mil. Asking for 1 oz. starting copper, for instance, with 0.003”/0.003” will normally be a no-bid as fabricators would be hard-pressed to be able to run with .002” spaces at Image prior to etch. (Attempting to compensate the 0.003” traces for 1 oz. copper with 1 mil will result in 0.002” spaces at Image prior to etch.) So, 0.003”/0.003” is usually the limit.

Read the full article here.


Editor's Note: This article originally appeared in the May 2014 issue of The PCB Design Magazine.

Share

Print


Suggested Items

The Quest for Perfect Design Data Packages

01/18/2019 | Barry Matties, I-Connect007
There’s an ongoing problem in the PCB industry: fabrication shops are receiving incomplete or inadequate design data packages, leaving manufacturers scrambling to fill in the blanks. For a quick-turn prototype shop like Washington-based Prototron, with over 5,000 customers and up to 60% of orders coming from new customers each month, that can add up to a lot of wasted time and effort just in the quoting stage. Dave Ryder, Prototron president, and Mark Thompson, engineering support, delve into this continuing issue and more.

A Fractal Conversation with Jim Howard and Greg Lucas

01/15/2019 | Barry Matties and Andy Shaughnessy, I-Connect007
Veteran PCB technologists Jim Howard and Greg Lucas have made an interesting discovery: Certain shapes of copper planes make a PCB run more efficiently than other shapes, a process they dubbed fractal design. It doesn’t appear to cost a penny more, and testing suggests that fractal design techniques could eliminate edge noise. Barry Matties and Andy Shaughnessy asked Jim and Greg to discuss the fractal design process, and the advantages of using this technique.

Calculation of Frequency-Dependent Effective Roughness Dielectric Parameters for Copper Foil Using Equivalent Capacitance Models

01/02/2019 | Marina Y. Koledintseva, Metamagnetics Inc.*, and Tracey Vincent, CST of America
Knowledge of the correct parameters of laminate PCB dielectrics refined from any copper foil roughness impact and the proper foil roughness characterization are important constituents of modeling high-speed digital electronics designs.



Copyright © 2019 I-Connect007. All rights reserved.