Design for Profitability: Avoiding Fabrication Issues and Minimizing Costly Revisions


Reading time ( words)

Note that I use the term “design for profitability,” or DFP, as opposed to any of the other acronyms such as DFM (design for manufacturability), DFT (design for test), or DFA (design for assembly). I’m taking this approach because it really all comes down to profit, doesn’t it?

Designers have the power to design profit into the board, or, conversely, inadvertently increase costs and remove profit from the PCB. In this article I am going to go over just a few of the challenges that fabricators routinely face and some typical solutions, especially solutions that can affect your bottom line.

I will start with DFM. Generally, this is the first stage for prototyping and DFM depends greatly on the capabilities of your chosen fab shop. Some designs are finished with autorouters after the critical traces have been hand-placed. It is at this point that unintended issues can arise between design and fab.

An example of this is same net-spacing violations where a track may “double back” near a surface mounted component, creating same-net spacing violations (Figure 1). Whereas the software does not see these as legit violations because they are same net, a fabricator knows that any features creating spaces below 0.003” can easily flake off at the image stage and create havoc elsewhere in the form of shorts. Edit time must be taken at the fab stage when these same-net spacing violations occur and the slivers eliminated. Some CAM software packages have a sliver fill option, but again this requires additional edit time at CAM.

Read the full article here.


Editor's Note: This article originally appeared in the March 2013 issue of The PCB Design Magazine.

Share


Suggested Items

Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals

06/20/2018 | Dave Lackey and Anaya Vardya, American Standard Circuits
The design process is arguably the most important part of the flex circuit procurement process. The decisions made in the design process will have a lasting impact, for better or worse, throughout the manufacturing cycle. In advance of providing important details about the actual construction of the flex circuit, it is of value to provide some sort of understanding of the expected use environment for the finished product.

Faster Board Speeds Demand Constraint-Driven Design

06/19/2018 | Ralf Bruening, Zuken
Using powerful constraint techniques can be a double-edged sword. While the design process is made much safer by including constraints, it is all too easy to over-constrain the design and make it impossible to complete routing and placement. Even paper design guidelines can make products uneconomic to produce unless a great deal of engineering knowledge is applied during the design.

Making the Most of PCB Materials for 5G Microwave and mmWave Amps

06/13/2018 | John Coonrod, Rogers Corporation
Ready or not, 5G is coming, and it will require the right circuit materials for many different types of high-frequency circuits, including power amplifiers. 5G represents the latest and greatest in wireless technology, and it will be challenging to design and fabricate, starting with the circuit board materials, because it will operate across many different frequencies, such as 6 GHz and below, as well as at millimeter-wave frequencies (typically 30 GHz and above).



Copyright © 2018 I-Connect007. All rights reserved.