Effective Characteristic Impedance


Reading time ( words)

In a typical interconnect, there lie multiple places where capacitance plays a factor in the signal integrity. This includes the driver and receiver output/input capacitance, as well as the packages, vias, and the transmission lines. Failing to optimize these parameters can often lead to unwanted reflections, excessive radiated and or conducted emissions, and sometimes failure of components and systems.

Reflections can occur anytime there is an impedance mismatch on the line. Sources of mismatches are plentiful and include trace width changes, vias, stubs, reference plane changes, and even the so-called fiber weave effect. In this case, a trace can encounter a different dielectric constant depending on whether it is routed over glass or the epoxy resin in the dielectric material. 

In this investigation, it is the capacitive contribution of the different components that are of interest, and how they affect the characteristic impedance the driver sees. 

To read the rest of this article, click here.

Share


Suggested Items

Advanced Stackup Planning with Impedance, Delay and Loss Validation

08/02/2018 | Yuriy Shlepnev, Simberian
A typical PCB design usually starts with the material selection and stackup definition—the stackup planning or design exploration stage. How reliable are the data provided by the material vendors and PCB manufacturers? Can we use these data to predict trace width and spacing for the target trace impedance or to calculate delays or evaluate the loss budget?

Achieving Optimum Signal Integrity During Layer Transition on High-Speed PCBs

07/11/2018 | Chang Fei Yee, Keysight Technologies
In electronic systems, signal transmission exists in a closed-loop form. The forward current propagates from transmitter to receiver through the signal trace. Meanwhile, the return current travels backward from receiver to transmitter through the power or ground plane directly underneath the signal trace that serves as the reference or return path. The path of forward current and return current forms a loop inductance. It is important to route the high-speed signal on a continuous reference plane so that the return current can propagate on the desired path beneath the signal trace.

Thermal Management Update with Doug Brooks

01/22/2018 | Andy Shaughnessy, PCBDesign007
I had the opportunity to talk with our contributor Doug Brooks recently. He has been doing some research on temperature effects on PCB traces over the last few years, and I wanted to check the status of his latest thermal efforts. He discussed his work with Dr. Johannes Adam, why temperature charts based on a trace in isolation are inaccurate, and how the industry remained so wrong about PCB temperatures for so long.



Copyright © 2018 I-Connect007. All rights reserved.