Being Flexible in a Rigid World


Reading time ( words)

With double-digit growth in the foreseeable future, flexible printed circuits (FPC), have found a tremendous niche as an enabler for various electronic applications. This trend is expected to drive the need to increase productivity while improving performance and reducing costs. Of course, in order to sell FPC, one must tackle the unenviable task of metalizing these often difficult-to-plate materials. In particular, the deposition of metal on a polyimide film is discussed. When discussing adhesion of a deposited metal to a substrate, one must focus on two distinct but related processes. The first relates to surface preparation conditioning and the second to the deposition of the metal itself. 

 Preparing the Polyimide Surface

One common theme that electroplaters often here is surface preparation. Materials such as polyimide are prone to low copper adhesion. To mitigate this situation, specially formulated conditioners are employed to provide a surface that is conducive to adhesion. Any surface that one desires to deposit another coating on requires that surface to be activated. Otherwise, defects (Figure 1) are often found. Generally these defects include:

  • Blistering
  • Peeling
  • Voids

MikeCaranoFig1.jpg

One critical step in the process sequence is to utilize a conditioning agent (prior to electroless copper metallization) that makes the polyimide material more susceptible to adhesion of the palladium catalyst. In turn, the conditioning agent enhances the adhesion of the subsequently plated copper to the polyimide.

As is often the case, electroless copper plating process systems include a second conditioning step after polyimide etch. While this author recommends such a step, it is with reservation. Basically, the second conditioning step must contain materials that are free rinsing so as to not leave a film on the polyimide. Such a film may lead to a barrier that reduces adhesion of the copper deposit. Should such a situation arise, the fabricator would be better served to run a performance test with no extra conditioner, one with 50% of the recommended concentration, and one test with the full recommendation. Then after plating, perform a tape test to quantify the adhesion, or lack thereof.   

Electroless Copper Deposition

The importance of the conditioning step not withstanding, total success is not achievable without a low stress electroless copper deposit. Typically, deposited metals exhibiting a high degree of internal stress find it necessary to “pullaway” from the substrate in order to relieve the stress condition.  

MikeCaranoFig2.jpgThe literature reviews and basic research studies provide evidence that the grain structure of the copper deposit influences the deposit’s adhesion to the copper interconnect.

Microsections taken from test boards processed in different electroless copper process formulations show vastly varying structures. As shown in Figure 2, the structure is one that is considered a finely grained crystal structure that appeared “loose.” From multiple testing programs, this type of structure was more prone to hole wall pullaway and over all poor adhesion.

In Figure 3, the structure shown has a high correlation to good interconnect reliability, as determined by IST and thermal shock testing. In addition, this type of deposit structure exhibited very low stress and provides excellent adhesion when subjected to tape testing. It is highly recommended that for flex circuit applications, especially dynamic flex, maximum adhesion of the copper to the substrate be achieved. Further, the data supports the assertion that a low- to medium-deposition electroless copper process be employed for flexible circuit manufacturing. These types of electroless copper processes typically provide a low stress deposit with a fairly large grain structure.

MikeCaranoFig3.jpg

This is not to say that direct metallization processes are not compatible to flex circuit fabrication. On the contrary, direct metalization is very proficient with respect to flex and will be reviewed in a future post.




About the Author:

Michael Carano is with RPB Chemical Technology. He has been involved in the PWB, general metal finishing photovoltaic industries for nearly 30 years and is currently co-chair of the IPC Technology Roadmap Executive Committee. Carano holds nine U.S. patents in topics including plating, metallization processes and PWB fabrication techniques. He was inducted into the IPC Hall of Fame in 2014 and has been a regular contributor to various industry publications throughout his career.

Share

Print


Suggested Items

EIPC Technical Snapshot: Automotive Technology

10/19/2020 | Pete Starkey, I-Connect007
Although current circumstances have forced the postponement of its live conferences, seminars, and workshops, EIPC continues to provide a platform for the exchange and dissemination of the latest knowledge and technical information to the European interconnection and packaging industry. Pete Starkey details how its current series of technical snapshots, delivered in webinar format, address technology challenges facing the automotive, telecom, and high-speed sectors of the industry.

Just Ask John Mitchell: The Exclusive Compilation

10/05/2020 | I-Connect007 Editorial Team
We asked for you to send in your questions for IPC President and CEO John Mitchell, and you took us up on it! We know you all enjoyed reading these questions and answers, so we’ve compiled all of them into one article for easy reference. We hope you enjoy having another bite at the apple. And if you’d like to hear more from John Mitchell, view his column series “One World, One Industry.”

I-Connect007 Editor's Choice: Five Must-Reads for the Week

10/02/2020 | Nolan Johnson, I-Connect007
Most all the action this week involved the STMA International Conference and Exposition. I-Connect007’s Real Time with… video interviews generally led the way for views and clicks. In each item, the intent was to make things better in some fashion. Whether it was pivoting on trade show delivery, optimizing the metalization process in the fab, adding more AI to manufacturing capital equipment, unifying and furthering the concept of the digital twin concept, or responding to company growth by upgrading systems with the help the equipment manufacturers, all these news items speak to being adaptable and forward-thinking.



Copyright © 2020 I-Connect007. All rights reserved.