DDR4: Not Your Grandfather’s DDR


Reading time ( words)

A long time ago, when DDR first came out, some of you may remember that it was difficult to design the interface. In my old board design team, we simulated the interface quite a bit to make sure that the system would function when the boards came back.

Then of course, the “been-there-done-that” attitude set in, and DDR became a design-by-numbers interface to push the schedule. Then came DDR2, which had many similarities to DDR.  By the time DDR3 came out, many people didn’t even bother to simulate the setups at some of the slower speeds. They’re largely leveraged from a previous design, so why bother?

And then comes DDR4.  This is the new guy in town who you can sense is a bit different. Questions come up:

  • What, you don’t have a fixed Vref? 
  • You’re going to have a new threshold every time you power up? Then how do you know whether you’re the signal is a 1 or a 0 if I don’t know what the threshold is beforehand? 
  • What do you mean you’re going to flip all the bits?

Then maybe it starts to sink in:

Maybe I should simulate this. So, just how good are the IBIS models for this anyway?  Can I trust them at these higher speeds?

nitinb0215-1.png

These are many of the questions we answered, along with our partners at Fujitsu and Micron, in the paper that has was nominated at DesignCon for a best paper award: DDR4 Board Design and Signal Integrity Verification Challenges

In the first half of the paper, we discuss the details of DDR4.  What exactly are Pseudo-Open Drain (POD) and Data-Bit Inversion (DBI), and why the Vref is so dodgy?  It will give you good background information about how DDR4 is different from DDR3.

In the second half, we compare the simulation results of a large setup between the older IBIS 4.2 spec, the newer IBIS 5.0 spec, and a transistor level Spice model.  Spoiler alert: the IBIS 5.0 results very closely match the transistor level Spice models – at a small fraction of the time needed to simulate.

nitinb0215-2.jpg

If you are designing a DDR4, and would like to confirm your board, this paper is a helpful reference in deciding what needs to be analyzed before and after releasing the board.

Download your copy of the paper here.

Share

Print


Suggested Items

Just Ask Heidi Barnes: The Exclusive Compilation

01/15/2021 | I-Connect007 Editorial Team
We asked for your questions for Keysight Technologies' Heidi Barnes, and you took us up on it! We know you all enjoyed reading these questions and answers, so we’ve compiled all of them into one article for easy reference. We hope you enjoy having another bite at the apple.

TTM’s Approach to Stackup Design: Train the Customer

01/12/2021 | I-Connect007 Editorial Team
In this interview with the I-Connect007 Editorial Team, TTM’s Julie Ellis and Richard Dang drill down into stackup design, detailing some of the common stackup challenges that their customers face when designing for both prototype and volume levels, and offering advice to designers or engineers who are struggling with stackup issues. They also discuss why having too many different prepregs in a stackup can be asking for trouble, and how proper stackup design can optimize both the fabrication and assembly processes.

Cutting Respins: Journey to the Single-spin PCB

01/07/2021 | Chris Young, The Goebel Company
PCB design is more than a short sprint to the finish line; it is a journey best suited for the prepared adventurer. According to a study by Lifecycle Insights, the average PCB design project requires 2.9 respins. These respins can cost anywhere from tens of thousands to millions of dollars—each! As an engineer/business owner, I find respins frustrating because I would rather spend my time and money applying scientific principles inventing, improving technology, and solving problems. I am not an advocate for perfectionism, but rather I focus on becoming a better adventurer. Sometimes I get to taste the sweet wine that is a single spin PCB. As fellow adventurers, let’s discuss some topics that influence unnecessary return trips on our PCB design journey: simulation, technical reviews, and interest in PCB design.



Copyright © 2021 I-Connect007. All rights reserved.