Simultaneously Switching Noise: An Overview


Reading time ( words)

This is the first post in a three part series that will examine the problem of SSN and explore methods of reducing SSN in your designs.

Digital designers have become accustomed to signal noise coming in from all directions. With the data rates running on the faster parallel busses, designers will now also need to be concerned about the noise coming out from the chip itself. One such kind of noise, Simultaneously Switching Noise (SSN), occurs due to the Simultaneously Switching Output (SSO) of buffers on a driving chip.

What causes SSN?

When a driven signal inside the chip transitions states, it consumes power from the rail. If a sufficient number of signals switch simultaneously, the rail might droop due to an inadequate access to immediately-required charge to provide current for all the switching outputs. This could happen because the capacitors from the Power Distribution Network (PDN), which are providing the charge, are too far away, or because those capacitors have been laid out in a way which causes them to have a high series inductance.

Subsequently, this droop in rail voltage causes the drivers to not drive clean signals. This is similar to crosstalk-induced noise in that the switching of one signal can cause variations in the output of another signal.

Accurately simulating the current draw of one driven signal on the voltage rail and the subsequent effect on other drivers requires information regarding the buffers’ behavior. One option would be to use Spice models. Alternatively, IBIS allows simulations which are much faster than Spice at a comparable level of accuracy, and is therefore a popular standard for simulation. IBIS 5.0 supports the data structures needed to simulate this “power-aware” topology.

nitin-0602.jpg

SSN is particularly relevant to high-speed parallel busses such as DDR4. With parallel busses, each bit can act independently of the others. This can cause greater loads on the power rails when the signals all switch in unison, creating a greater load on the rail.

In the second installment of this blog series, we’ll take a look at the effects of a poorly designed PDN on SSN and signal integrity. In the meantime, if you’d like to learn more about SSN and similar challenges, check out our white paper “DDR4 Board Design and Signal Integrity Challenges,” which was recently nominated for the DesignCon Best Paper Award.

Share


Suggested Items

Judy Warner: AltiumLive’s Second Year to be Even Better Than First

09/19/2018 | Andy Shaughnessy, Design007
Last year, Altium launched its AltiumLive event with shows in San Diego and Munich, Germany. This year, the event has expanded to include an extra day of classes. Altium is gearing up for the San Diego event in early October and the German show in January 2019. I recent spoke with Judy Warner, director of community engagement for Altium, about what designers should expect at both shows, and how the company can build on the success of the 2017 events going into the future.

PCB Design Challenges: A Package Designer’s Perspective

09/17/2018 | Bill Acito, Cadence Design Systems
The challenges faced by the PCB designers of today are significant. If we examine the breadth of designs, we find ever-increasing data rates and more high-speed signal routing that drive additional challenges meeting signal-quality requirements, including reflection signal loss and crosstalk issues. At the same time, designers are being asked to complete designs in shorter cycle times and in smaller form factors. They must come up with new and more complex routing strategies to better control impedance and crosstalk. Manual implementation is often time-consuming and prone to layout errors.

Mentor Preparing for Next-Gen PCB Designers

08/20/2018 | Andy Shaughnessy, Design007 Magazine
Millennials are the future of our industry. What does this mean for the PCB design community? How do we attract more of these smart young people to the world of PCB design? I asked Paul Musto, director of marketing for Mentor’s Board Systems Division, to explain the company’s initiatives aimed at drawing more young people into PCB design



Copyright © 2018 I-Connect007. All rights reserved.