Avoid Overload in Gain-Phase Measurements


Reading time ( words)

Today, most of our printed circuit boards have at least a few DC-DC converters, and some boards have many. We have a large choice when it comes to deciding what to use: we can design and build our own converter from discrete parts (called voltage regulator down or VRD) or we can buy one of the off-the-shelf open-frame or fully encapsulated voltage regulator modules (VRM). 

For low currents we can use linear regulators; for medium and high current we are better off using a switching-mode topology. Whatever circuit suits best our needs, chances are that we want to keep the output voltage regulated against changes in input voltage and load current, which in turn calls for one or more internal control loops.

There is a well-established theory to design stable control loops, but in the case of power converters, we face a significant challenge: each application may require a different set of output capacitors coming with our loads. Since the regulation feedback loop goes through our bypass capacitors (shown as a single Cout in Fig. 1), our application-dependent set of capacitors now become part of the control feedback loop. Unfortunately, certain combination of output capacitors may cause the converter to become unstable, something we want to avoid. This raises the need to test, measure and/or simulate the control-loop stability.

fig1-istvan-0615.jpg

To read this column, which appeared in the June 2015 issue of The PCB Design Magazine, click here.

Share


Suggested Items

Thermal Management Materials: Easing the Decision-Making Process

08/02/2018 | Jade Bridges, Electrolube
There are many different types of thermally conductive materials, and choosing between them will be dictated by production requirements and application design, as well as critical performance factors that must be achieved.

Heat Transfer and Thermal Conductivity: The Facts

12/26/2017 | Jade Bridges, Electrolube
In my first two columns, I presented a broad introduction to the subject of thermal management of electronic circuits. This month I’m taking a closer look at thermal interface materials—how they can be applied to achieve efficient heat transfer, and the significance of bulk thermal conductivity in relation to heat transfer and thermal resistance.



Copyright © 2018 I-Connect007. All rights reserved.