Rigid-Flex PCB Right the First Time--Without Paper Dolls


Reading time ( words)

The biggest problem with designing rigid-flex hybrid PCBs is making sure everything will fold in the right way, while maintaining good flex-circuit stability and lifespan. The next big problem to solve is the conveyance of the design to a fabricator who will clearly understand the design intent and therefore produce exactly what the designer/engineer intended.

Rigid-flex circuit boards require additional cutting and lamination stages, and more exotic materials in manufacturing; therefore, the cost of re-spins and failures are substantially higher than traditional rigid boards. To reduce the risk and costs associated with rigid-flex design and prototyping, it is desirable to model the flexible parts of the circuit in 3D CAD to ensure correct form and fit. In addition, it is necessary to provide absolutely clear documentation for manufacturing to the fabrication and assembly houses.

The traditional attempt most design teams use to mitigate these risks is to create a “paper doll” of the PCB, by printing out a 1:1 representation of the board and then folding it up to fit a sample enclosure. This presents a number of issues: 

  1. The paper doll does not also model the 3D thickness of the rigid and flex sections
  2. The paper doll does not include 3D models of the electronic components mounted on the PCB
  3. A physical sample of the final enclosure is needed, which may not yet be available
  4. If the mechanical enclosure is custom designed, a costly 3D print will be required for testing. This adds much time and expense to the project. As cool as 3D printers are, it's not a sensible use for them if the modeling can be done entirely in software.

This paper discusses practical steps in two approaches to solve these problems, contrasting against the traditional paper doll approach above.

In the first scenario, a 3D MCAD model of the PCB assembly can be created in the MCAD package where a sheet metal model can be generated for the PCB substrate model. This sheet metal model can be bent into shape in the MCAD software to fit the final enclosure and check for clearance violations. This is not the best approach, but it is better than paper dolls.

In the second scenario, a significant part of the enclosure or mechanical assembly model is brought from the MCAD package into the PCB design software, where the rigid-flex board outline can be designed specifically to fit with it. Rigid-flex layer stack sections can be defined and then flexible circuit areas have bending lines added. In the PCB design tool's 3D mode, the folds are then implemented to reveal where potential clearance violations and interference occurs. The PCB design can then be interactively modified to resolve the problems and check right away—without having to build any further mock-ups or translate design databases from one tool to another. 

To read this entire article, which appeared in the June 2015 issue of The PCB Design Magazine, click here.

Share


Suggested Items

Fadi Deek Discusses Mentor’s New Power Integrity eBook

04/17/2018 | Andy Shaughnessy, Design007 Magazine
At DesignCon 2018, I ran into Mentor’s Fadi Deek, the author of both of Mentor’s I-Connect007 eBooks: the newest, "The Printed Circuit Designer’s Guide to Power Integrity by Example," and their first book, "The Printed Circuit Designer’s Guide to Signal Integrity by Example." We sat down and discussed how the idea for the books came about, as well as some of the power integrity challenges facing PCB designers and engineers.

Mentor’s HyperLynx Automates SERDES Channel Design

04/09/2018 | Andy Shaughnessy, Design007 Magazine
Mentor recently released the newest version of its HyperLynx signal integrity software. This version may be the first SI tool in the industry to fully automate SERDES design channel validation. I spoke recently with Chuck Ferry, product marketing manager with Mentor, about the new HyperLynx and some of the new serial link design capabilities that customers have been demanding.

Julie Ellis: TTM’s Interface Between Designer and Fabricator

04/04/2018 | Barry Matties, Publisher, I-Connect007
As a field application engineer for TTM, Julie Ellis sees the problems that can occur between circuit board designers and manufacturers. Barry Matties spoke with Julie at the AltiumLive event in Munich about the age-old problem of throwing designs “over the wall,” the trend towards HDI, and what advice she would give new designers.



Copyright © 2018 I-Connect007. All rights reserved.