Using Data Bus Inversion to Mitigate Simultaneously Switching Noise


Reading time ( words)

This is the third post in a three part series that examines the problem of SSN and explores methods of reducing SSN in your designs.

DBI is an optional feature in DDR4.  If DBI is enabled, then when the driver (controller during a write or DRAM during a read) is sending out data on a lane, it counts the number of “0” (logic low) bits.  If the number of bits driving “0” in the lane is five or more, then the entire byte is inverted, and a ninth bit indicating DBI is asserted low.  This ensures that out of the 8 DQ bits and the 9th DBI bit, at least five bits are “1” during any given transaction.  This also ensures that out of the entire data lane, the maximum total number of signals transitioning is either five 1’s to 9 1’s or vice-versa.  There can never be a situation where all bits go from 0 to 1 or from 1 to 0.

So, if we run the same data bus with data patterns which would be the output of the DBI logic, we get the waveform for DQ0 in Figure 1.

Figure-1_DBI-processed-bit-patterns-with-improved-PDN-520x288.png

Figure 1: DBI processed bit patterns with improved PDN

The eye-height for DQ0 in this case is over 315mV, which surpasses all the other conditions.  Now, since DBI is data dependent, the benefits of DBI may vary and need to be analyzed before implementation.

Thank you for following our blog series on SSN—we hope you find this information valuable and share your thoughts in the comments. With a good design of the PDN, and possibly selecting the DBI feature in DDR4, SSN shouldn’t be a bother in your design. If you’d like to learn more about SSN and similar challenges, check out our white paper “DDR4 Board Design and Signal Integrity Challenges,” which was recently nominated for the DesignCon Best Paper Award.

Share


Suggested Items

Fadi Deek Discusses Mentor’s New Power Integrity eBook

04/22/2018 | Andy Shaughnessy, Design007 Magazine
At DesignCon 2018, I ran into Mentor’s Fadi Deek, the author of both of Mentor’s I-Connect007 eBooks: the newest, "The Printed Circuit Designer’s Guide to Power Integrity by Example," and their first book, "The Printed Circuit Designer’s Guide to Signal Integrity by Example." We sat down and discussed how the idea for the books came about, as well as some of the power integrity challenges facing PCB designers and engineers.

Mentor’s HyperLynx Automates SERDES Channel Design

04/09/2018 | Andy Shaughnessy, Design007 Magazine
Mentor recently released the newest version of its HyperLynx signal integrity software. This version may be the first SI tool in the industry to fully automate SERDES design channel validation. I spoke recently with Chuck Ferry, product marketing manager with Mentor, about the new HyperLynx and some of the new serial link design capabilities that customers have been demanding.

Julie Ellis: TTM’s Interface Between Designer and Fabricator

04/04/2018 | Barry Matties, Publisher, I-Connect007
As a field application engineer for TTM, Julie Ellis sees the problems that can occur between circuit board designers and manufacturers. Barry Matties spoke with Julie at the AltiumLive event in Munich about the age-old problem of throwing designs “over the wall,” the trend towards HDI, and what advice she would give new designers.



Copyright © 2018 I-Connect007. All rights reserved.