Designing a Manufacturable Flexible PCB Involves Tradeoffs


Reading time ( words)

Designers are always inquiring about the limits of flexible PCBs. Maximum amperage, copper thickness, flex life, and minimum recommended pitch are just a few examples of the limits that designers are exploring when designing electronic packages. Design guides and websites provide information and tools related to many of these questions, and materials and properties pages provide information on the various materials and material thicknesses that are typically used. A trace width calculator can give you power, resistance and amperage calculations based on trace configuration. Design guides can also provide information and recommendations on a wide variety of flexible circuit options and characteristics.

In most cases, these information sources address the single criteria, but in reality, a flex designer is faced with multiple requirements that can make calculations and specifications much more complicated. For example, 5 oz. copper may adequately address an amperage requirement, but flexibility can be diminished. Five-ounce copper may not work for high flex applications, although it may work with limited flexing such as flex-to-install applications. Another limitation of thicker copper is the ability to resolve narrow conductors. Circuits with 0.005” width and spacings are commonly fabricated, but with much thinner copper. Five-ounce copper is 0.007” thick. This would require etching ratios (the rate of X-Y etch to Z etch) that present manufacturability issues. So the limits of line width and spacing are highly dependent on copper thicknesses.

Copper thickness and pitch are just two examples of the interdependencies that different characteristics or parameters impose on each other. As flexible circuit features and characteristics such as layer count, number of components, surface finishing and circuit size increase, the interdependencies of multiple criteria become far more complex. As with most things in life, in order to get something you probably have to give something. What is at stake is the manufacturability, and cost effectiveness, of the design. Failure to adequately account for these interdependencies can result in unacceptable manufacturing yields and/or designs that are not robust.

An electronic designer is usually faced with a set of trade-offs when deciding what type of interconnect medium to adopt. Rigid printed circuit boards, connectors, flex circuits, wire harnesses and hand assembly all compete for the attention of a system designer. Often the designer is forced to compromise among several design constraints driven by restrictions that alternative component specifications place on the package. Within flex circuitry design alternatives, the solution may involve going from single-sided to double-sided circuits, adding a shielding layer, folding an “origami” flex circuit, or blending two circuits into one.

Understanding these interdependencies requires a high level of experience and expertise—and sometimes a sequence of trial and error. Many times an iterative process is required even for some of the most experienced flexible circuit engineers. Getting a flexible circuit supplier involved early and often in the design process will eliminate some of the more obvious design issues. Choosing a supplier with a short product start-up cycle time can also be advantageous.

When choosing a flex circuit supplier, look for one with website tools and resources that provide design support with these complex issues. Utilize the engineering talent at the supplier by taking advantage of a design consultation. A robust design review process helps bring a new part number from concept to high volume manufacturing. Designing a flexible circuit doesn’t have to be complicated and challenging if support resources from the supplier are engaged early in the decision process.

Dave Becker is vice president of sales and marketing at All Flex Flexible Circuits LLC.

 

Share


Suggested Items

Chuck Bauer Discusses the Future of Packaging

09/05/2018 | I-Connect007 Editorial Team
When we decided to cover the future of PCB packaging, we knew we would have to interview Charles Bauer, Ph.D., owner of TechLead Corporation. Chuck recently spoke with Happy Holden, Andy Shaughnessy and Barry Matties about current trends in packaging, the need for product designers and manufacturers to communicate, and why no matter how cool the technology is, cost is still king.

Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals

06/25/2018 | Dave Lackey and Anaya Vardya, American Standard Circuits
The design process is arguably the most important part of the flex circuit procurement process. The decisions made in the design process will have a lasting impact, for better or worse, throughout the manufacturing cycle. In advance of providing important details about the actual construction of the flex circuit, it is of value to provide some sort of understanding of the expected use environment for the finished product.

Mark Thompson: What Designers Need to Know about Fab

06/08/2018 | Dan Beaulieu, D.B. Management Group
Mark Thompson wants to help PCB designers. He’s seen it all in CAM support at Prototron Circuits: the incomplete or inaccurate data packages, boards that are unnecessarily complex or over-constrained, and so much more. Mark just returned to writing his popular Design007 Magazine column, The Bare (Board) Truth, which addresses questions such as, “What happens to your design at CAM?” I asked Mark to explain why it’s so important for designers to communicate with their fabricators, and why they need to get out of the office and visit a board shop every now and then.




Copyright © 2018 I-Connect007. All rights reserved.