The Gerber Guide, Chapter 2


Reading time ( words)

It is clearly possible to fabricate PCBs from the fabrication data sets currently being used; it's being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world's PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

In this monthly series, I will explain in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data. Each month we’ll look at a different aspect of the design to fabrication data transfer process.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Chapter 2: Alignment (Registration)

Never mirror or flip layers! All layers must be viewed from the top of the PCB, which means that the text must be readable on the top layer and mirrored on the bottom layer. Alas, sometimes, in a mistaken attempt to be helpful, designers flip layers because they must anyway be mirrored on the photoplotter. This could be helpful in a world where the designer's files are used directly in fabrication, but these data layers are actually input for the CAM system. This needs the correct 2.5D PC structure, so designers need to follow the standard protocol for providing digital data. The fabricator's CAM system will do the rest: it will optimise and panelise the PCB and on output of the final, panelised data, it will mirror, rotate, shift and scale as required by production. Any designer that mirrors layers can only hope that the CAM engineer notices this and ‘unmirrors’ them. 

To read this entire article, which appeared in the September 2015 issue of The PCB Design Magazine, click here.

Share


Suggested Items

PCB Cooling Strategies, Part 1

01/17/2018 | Bin Zhou, EDADOC
With the development of communication and IT industries and the ever-increasing demand for information analysis, many chip makers have racked their brains trying to provide customers with better technology, such as increased computing power and storage capacity of chips as well as diversifying their product offerings.

Streamlining Thermal Design of PCBs

01/10/2018 | Dr. John Parry, CEng, Mentor
When designing a PCB, thermal issues are often locked in at the point of selecting and laying out the chip package for the board. After that, only remedial actions are possible if the components are running too hot. Assumptions made about the uniformity of the airflow in these early design stages can mean a disaster for the commercial viability of a PCB if those assumptions are incorrect. A different approach is needed to improve reliability and to optimize board performance. Dr. John Parry of Mentor explains.

Mike Jouppi Discusses his Drive for Better Thermal Data

01/12/2018 | Andy Shaughnessy, PCB Design007
If you mention thermal management in a group of PCB designers and design engineers, Mike Jouppi’s name usually pops up. Mike is an engineer and founder of the Thermal Management LLC consulting firm. He spent years updating IPC’s charts on current-carrying capacity, which had been unchanged since the 1950s. I recently caught up with Mike and asked him to give us his views on the state of thermal management, as well as the tools and standards related to thermal design.



Copyright © 2018 I-Connect007. All rights reserved.