The Gerber Guide, Chapter 2


Reading time ( words)

It is clearly possible to fabricate PCBs from the fabrication data sets currently being used; it's being done innumerable times every day all over the globe. But is it being done in an efficient, reliable, automated and standardized manner? At this moment in time, the honest answer is no, because there is plenty of room for improvement in the way in which PCB fabrication data is currently transferred from design to fabrication.

This is not about the Gerber format, which is used for more than 90% of the world's PCB production. There are very rarely problems with Gerber files themselves; they allow images to be transferred without a hitch. In fact the Gerber format is part of the solution, given that it is the most reliable option in this field. The problems actually lie in which images are transferred, how the format is used and, more often, in how it is not used.

In this monthly series, I will explain in detail how to use the newly revised Gerber data format to communicate with your fabrication partners clearly and simply, using an unequivocal yet versatile language that enables you and them to get the very best out of your design data. Each month we’ll look at a different aspect of the design to fabrication data transfer process.

This column has been excerpted from the Guide to PCB Fabrication Data: Design to Fabrication Data Transfer.

Chapter 2: Alignment (Registration)

Never mirror or flip layers! All layers must be viewed from the top of the PCB, which means that the text must be readable on the top layer and mirrored on the bottom layer. Alas, sometimes, in a mistaken attempt to be helpful, designers flip layers because they must anyway be mirrored on the photoplotter. This could be helpful in a world where the designer's files are used directly in fabrication, but these data layers are actually input for the CAM system. This needs the correct 2.5D PC structure, so designers need to follow the standard protocol for providing digital data. The fabricator's CAM system will do the rest: it will optimise and panelise the PCB and on output of the final, panelised data, it will mirror, rotate, shift and scale as required by production. Any designer that mirrors layers can only hope that the CAM engineer notices this and ‘unmirrors’ them. 

To read this entire article, which appeared in the September 2015 issue of The PCB Design Magazine, click here.

Share

Print


Suggested Items

Autodesk’s Fusion 360 Merges ECAD, MCAD

05/28/2020 | Andy Shaughnessy, Design007 Magazine
Andy Shaughnessy spoke with Autodesk’s Matt Berggren about the company’s Fusion 360 EDA tool and the new capabilities added to the software. Matt explains how Fusion 360 blends ECAD and MCAD functionality in one environment and at an affordable price, and why he believes it will help round out Autodesk's electronic portfolio with end-to-end capabilities.

Ventec Book Excerpt: Thermal Management with Insulated Metal Substrates

05/28/2020 | I-Connect007 Editorial Team
The following is an excerpt from Chapter 1 of "The Printed Circuit Designer's Guide to... Thermal Management with Insulated Metal Substrates," written by Ventec International Group’s Didier Mauve and Ian Mayoh. In this free eBook, the authors provide PCB designers with the essential information required to understand the thermal, electrical, and mechanical characteristics of insulated metal substrate laminates.

A Design Economics Primer

05/21/2020 | I-Connect007 Editorial Team
When you start a new design, do you begin tracking costs right away, or do you wait until you have a functioning product before you start looking at the dollars and cents? Chris Young begins cost-aware design before the design cycle has even begun. Andy Shaughnessy and Nolan Johnson recently interviewed Chris, an engineer with The Goebel Company and founder of Young Engineering Services, and asked him to explain his approach to design economics.



Copyright © 2020 I-Connect007. All rights reserved.