Lightning Speed Laminates: Why Do Different Test Methods Yield Different Electrical Values?


Reading time ( words)

A variety of different test methods may be used for any one electrical concern. This article will discuss the issues related to determining the dielectric constant (Dk) and dissipation factor (Df or Tan-Delta). On a data sheet, a designer may see a Dk value for a material to be 3.5, as an example. Once the designer buys the material and performs necessary evaluations, it may be found that the Dk of the material is 3.8. In some applications this difference in Dk is probably not meaningful; however, for many RF and high-speed digital applications, this difference could be very significant. What is really interesting about this example is that the two Dk values may both be correct, depending on the test methods used.

Most laminates used in the PCB industry are anisotropic and this means that the electrical properties are not the same on all three axes of the material. Typically the thickness (z-axis) of the material will have a different Dk value than the x or y axes of the material. The reasons for this depend on what type of material is being considered.

The laminates used in the PCB industry are typically woven-glass reinforced, however there are notable exceptions. The glass reinforcement layer typically has a different Dk and Df than does the raw substrate of the laminate. The standard E-glass most often used in PCB laminates has a typical Dk value of about 6 and a dissipation factor of around 0.004. The common FR-4 laminates use relatively simple resin systems and the resin itself has a Dk that is around 3 and a Df of about 0.03. Different ratios of resin to glass will cause the laminate to have a Dk that is somewhere between the value of the resin and that of the glass. However, the glass-resin ratio impact on Dk is usually considered when evaluating the material through the thickness axis and if the x- or y-axis is evaluated, the Dk value may be very different than the z-axis result.

A large number of test methods are available to evaluate materials for Dk and Df. The methods that are most often used in the PCB laminate industry for making these measurements are typically tailored to evaluating materials in very large volume. Because of this issue, these test methods need to determine Dk and Df relatively fast, have good repeatability, and be used for quality control. A common test method used is the clamped stripline resonator, where a clamping fixture is used to form a stripline structure; the layer structure of a stripline is ground-signal-ground. This test method determines the Dk and Df of the material in the clamped fixture and more specifically, it is reporting these values related to the thickness axis of the material.

To read this entire article, which appeared in the December 2015 issue of The PCB Design Magazine, click here.

Share


Suggested Items

Karl-Heinz Fritz on Cicor’s DenciTec Technology

10/24/2018 | Nolan Johnson, I-Connect007
In a recent interview, Karl-Heinz Fritz, VP of technology at Cicor, discusses the business, DenciTec technology, the impact of tariffs on trade, and applications for 3D printing and additive manufacturing, including potential new opportunities for PCB designers.

Lee Ritchey Returns to AltiumLive with 32 Gbps Design Class

09/26/2018 | Andy Shaughnessy, Design007 Magazine
Lee Ritchey was one of the instructors for last year’s inaugural AltiumLive event, which drew hundreds of PCB designers. Now, Lee is back, teaching a high-speed design class at next week’s AltiumLive in San Diego. That class is sold-out, but you can catch Lee teaching the same class at the January AltiumLive event in Germany. I asked Lee to explain what he plans to cover in this course, and why PCB designers and design engineers should consider attending one of the events.

Advanced Stackup Planning with Impedance, Delay and Loss Validation

08/02/2018 | Yuriy Shlepnev, Simberian
A typical PCB design usually starts with the material selection and stackup definition—the stackup planning or design exploration stage. How reliable are the data provided by the material vendors and PCB manufacturers? Can we use these data to predict trace width and spacing for the target trace impedance or to calculate delays or evaluate the loss budget?



Copyright © 2018 I-Connect007. All rights reserved.