Systematic Estimation of Worst-Case PDN Noise: Target Impedance and Rogue Waves


Reading time ( words)

In the dark ages of power distribution design, the typical advice was to use a bulk capacitor and one 0.1uF bypass capacitor for every power pin on the digital circuit. This was very unscientific, but served the industry reasonably well in low-density and low-speed circuits. As the designs got more demanding, the target impedance concept was developed [1]. Using a target impedance, designers had a metric and a design goal to guarantee that the voltage transients stay within specified limits.

Strictly speaking, the target-impedance concept is valid only for flat self-impedance profiles; however, most of our practical designs do not have that luxury. With non-flat impedance profiles, the noise is different. Surprisingly and counterintuitively, keeping the same maximum impedance, the more we deviate from the flat impedance by pushing the impedance down in certain frequency ranges, the higher the worst-case transient noise becomes. This raises the question how to do a systematic design and also gives rise to speculations about rogue waves [2]. But there is a systematic, fast and efficient way of calculating the worst-case noise for any arbitrary impedance profile. 

The target impedance concept assumes that the power distribution network is hit by a series of current steps, each current step having a magnitude of DI and fastest transition time of ttr. If up to the BW bandwidth of the excitation the PDN impedance is Ztarget, the resulting voltage transients are within the DV limits.

To read this entire article, which appeared in the December 2015 issue of The PCB Design Magazine, click here.

Share


Suggested Items

EDADOC: A Driving Force in China's Automotive Electronics Design

05/21/2018 | Edy Yu, I-Connect007
EDADOC is one of the biggest providers of PCB design and manufacturing services in China, with a long history in automotive electronics design and manufacturing. China Editor Edy Yu recently conducted an email interview with EDADOC R&D Technical Research Manager William Zhou and Brand Planning Specialist Wen Ling, who collaborated on their answers. We discussed the challenges related to designing and fabricating automotive PCBs, the opportunities in this segment, and the trends they see in the market for autonomous and electric vehicles.

Zuken Pulling Ahead in Automotive PCB Design

05/07/2018 | Andy Shaughnessy, Design007 Magazine
Zuken has been developing PCB design tools for the automotive market for years. With automotive electronics worth over $200 billion globally, and growing every day, Zuken is preparing for a brave new world of smart cars, and autonomous and electric vehicles. I spoke with Humair Mandavia, chief strategy officer with Zuken, and asked him about the challenges facing automotive PCB designers, and the trends he’s seeing in this constantly evolving segment of the industry.

Fadi Deek Discusses Mentor’s New Power Integrity eBook

04/22/2018 | Andy Shaughnessy, Design007 Magazine
At DesignCon 2018, I ran into Mentor’s Fadi Deek, the author of both of Mentor’s I-Connect007 eBooks: the newest, "The Printed Circuit Designer’s Guide to Power Integrity by Example," and their first book, "The Printed Circuit Designer’s Guide to Signal Integrity by Example." We sat down and discussed how the idea for the books came about, as well as some of the power integrity challenges facing PCB designers and engineers.



Copyright © 2018 I-Connect007. All rights reserved.