Lightning Speed Laminates: The Dilemma--Soldermask for High-Frequency PCBs


Reading time ( words)

High-frequency and high-speed digital PCBs may not have issues with soldermask. However, depending on their construction, other PCBs can have an issue with soldermask causing degraded electrical performance. PCBs with a stripline structure, in which the signal layer is buried within a multilayer, typically do not have an issue with electrical performance degradation due to soldermask. Soldermask can impact PCBs with RF circuitry on the outer layers, which can lessen high-frequency electrical performance.

Typically, PCBs with RF traces on the outer layers have minimal or no soldermask in the RF circuitry areas. Many times the soldermask is applied in areas where components are soldered to the PCB but the soldermask is developed away in the areas where conductors have critical RF performance. There are many reasons to avoid soldermask coverage on RF conductors, due to inherent soldermask properties. Most soldermask used in the PCB industry is liquid photoimageable (LPI), which is typically high in dissipation factor (Df) and high in moisture absorption, and the thickness can vary due to processing or design.

The typical soldermask has a dissipation factor of about 0.025 when tested at 1 GHz, and moisture absorption is about 1–2% depending on the formulation. For comparison, many high-frequency laminates have a Df value of about 0.005 or better and moisture absorption is typically no worse than 0.3%. The higher Df property of soldermask raises the circuit’s dielectric loss, which causes an increase in insertion loss. The moisture absorption can cause differences in impedance and phase response, but it is typically more problematic for losses where it can cause increased insertion loss.

Another point to consider is that RF circuitry on the outer layer of a PCB will usually be a microstrip or grounded coplanar waveguide (GCPW) structure. Both of these structures can have lower insertion loss and they get some loss benefit due to their fields using air. Air is the lowest-loss medium for electromagnetic waves, and these waves use electric and magnetic fields. When a microstrip or GCPW is covered with soldermask, some of the fields which were using air as the dielectric medium are now using soldermask instead.

To read this entire article, which appeared in the June 2016 issue of The PCB Design Magazine, click here.

Share


Suggested Items

Martin Cotton Discusses Ventec’s New Book and Low-Loss Materials

04/11/2018 | Andy Shaughnessy, Design007 Magazine
During DesignCon 2018, Andy Shaughnessy sat down for an interview with Martin Cotton, director of OEM projects for Ventec. Martin was a PCB designer for years, so he has experience on both sides of the desk. They discussed Ventec’s reasons for coming to DesignCon, their expansion into low-loss materials, and Ventec’s new I-Connect007 book, The Printed Circuit Designer’s Guide to Thermal Management with Insulated Metal Substrates.

Mentor’s HyperLynx Automates SERDES Channel Design

04/09/2018 | Andy Shaughnessy, Design007 Magazine
Mentor recently released the newest version of its HyperLynx signal integrity software. This version may be the first SI tool in the industry to fully automate SERDES design channel validation. I spoke recently with Chuck Ferry, product marketing manager with Mentor, about the new HyperLynx and some of the new serial link design capabilities that customers have been demanding.

Part 2: EIPC’s 2018 Winter Conference in Lyon, Review of Day 1

02/19/2018 | Pete Starkey, I-Connect007
We continue with the rest of Pete Starkey’s report on Day 1 of the EIPC Winter Conference in Lyon, France. Included in this segment are presentations by Ventec, Ericsson, TTM and others, plus photos of their evening tour of Alstom.



Copyright © 2018 I-Connect007. All rights reserved.