Lightning Speed Laminates: The Dilemma--Soldermask for High-Frequency PCBs


Reading time ( words)

High-frequency and high-speed digital PCBs may not have issues with soldermask. However, depending on their construction, other PCBs can have an issue with soldermask causing degraded electrical performance. PCBs with a stripline structure, in which the signal layer is buried within a multilayer, typically do not have an issue with electrical performance degradation due to soldermask. Soldermask can impact PCBs with RF circuitry on the outer layers, which can lessen high-frequency electrical performance.

Typically, PCBs with RF traces on the outer layers have minimal or no soldermask in the RF circuitry areas. Many times the soldermask is applied in areas where components are soldered to the PCB but the soldermask is developed away in the areas where conductors have critical RF performance. There are many reasons to avoid soldermask coverage on RF conductors, due to inherent soldermask properties. Most soldermask used in the PCB industry is liquid photoimageable (LPI), which is typically high in dissipation factor (Df) and high in moisture absorption, and the thickness can vary due to processing or design.

The typical soldermask has a dissipation factor of about 0.025 when tested at 1 GHz, and moisture absorption is about 1–2% depending on the formulation. For comparison, many high-frequency laminates have a Df value of about 0.005 or better and moisture absorption is typically no worse than 0.3%. The higher Df property of soldermask raises the circuit’s dielectric loss, which causes an increase in insertion loss. The moisture absorption can cause differences in impedance and phase response, but it is typically more problematic for losses where it can cause increased insertion loss.

Another point to consider is that RF circuitry on the outer layer of a PCB will usually be a microstrip or grounded coplanar waveguide (GCPW) structure. Both of these structures can have lower insertion loss and they get some loss benefit due to their fields using air. Air is the lowest-loss medium for electromagnetic waves, and these waves use electric and magnetic fields. When a microstrip or GCPW is covered with soldermask, some of the fields which were using air as the dielectric medium are now using soldermask instead.

To read this entire article, which appeared in the June 2016 issue of The PCB Design Magazine, click here.

Share




Suggested Items

A Definitive Review of New Expert Guide to High-Performance Materials

04/13/2022 | Happy Holden, I-Connect007
I am always surprised when a colleague produces a statement about PCB laminates that seems incorrect or out of date. This need not happen today as the specialists at Isola have written an excellent book about high performance materials, now available for download from I-Connect007. Author Michael Gay, a 25-year veteran of laminate manufacturing, meticulously guides readers through the most pertinent questions regarding rigid laminates. This is essential information for everyone, including the experts, because the materials and applications for laminates in printed circuits are constantly changing.

DFM 101: PCB Materials

04/30/2021 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is understanding the cost drivers in the PCB manufacturing process. This article is the first in a series that will discuss these cost drivers (from the PCB manufacturer’s perspective) and the design decisions that will impact product reliability.

Polar Instruments Driven by Customer Demand

04/08/2021 | Andy Shaughnessy, Design007 Magazine
Andy Shaughnessy recently spoke with Geoffrey Hazelett, vice president of sales for Polar Instruments, about the virtual IPC APEX EXPO and the eventual return of live trade shows and conferences. They also discussed some of the company’s newest releases, many of which came about through customer demand.



Copyright © 2022 I-Connect007. All rights reserved.