IPC-2581 Revision C: Complete Build Intent for Rigid-Flex

Reading time ( words)

With the current design transfer formats, rigid-flex designers face a hand-off conundrum. You know the situation: My rigid-flex design is done so now it is time to get this built and into the product. Reviewing the documentation reveals that there are tables to define the different stackup definitions used in the design. The cross-references for the different zones to areas of the design are all there, I think. The last time a zone definition was missed, we caused a costly mistake.

Continuing to review the design documents, I verify that the bend locations are defined with information about the radius of the bends with a detail about how the final product looks when all bending is complete, ensuring that the folds are made in the correct order. I hope all information is contained in the documentation, and there will be no calls from the fabricator delaying the product. With all these documents and details left open to interpretation, there must be a way to send this data more intelligently.

Enter IPC-2581 Revision C
There is a way to transfer this data digitally, reducing the need for various forms of drawing details in a document. The new IPC-2581 Revision C format eliminates the need to manually—and painstakingly—create these details in a fabrication drawing. It uses the design data to explicitly define the multiple aspects of a rigid-flex design. How? Let’s look at how some of the details are sent digitally.

First, let’s look at stackup and general board structure. In the design tool, the different stackup details are created, with one or more rigid stackup definitions (8-layer vs. 4-layer, etc.) as well as several flex stackup structures (1 or 2 copper layers, etc.). In my design database a boundary is defined and the stackup data is assigned to those boundaries. This data is then placed into the IPC-2581C format containing the links of each stackup to each boundary association. These are known in IPC-2581 terms as stackup groups assigned to stackup zones. A by-product of these connections is the ability to define the outline profile for each copper and dielectric layer, a key tool for the fabricator.

To read this entire article, which appeared in the March 2021 issue of Design007 Magazine, click here.



Suggested Items

‘The Trouble with Tribbles’

06/17/2021 | Dana Korf, Korf Consultancy
The original Star Trek series came into my life in 1966 as I was entering sixth grade. I was fascinated by the technology being used, such as communicators and phasers, and the crazy assortment of humans and aliens in each episode. My favorite episode is “The Trouble with Tribbles,” an episode combining cute Tribbles, science, and good/bad guys—sprinkled with sarcastic humor.

Why We Simulate

04/29/2021 | Bill Hargin, Z-zero
When Bill Hargin was cutting his teeth in high-speed PCB design some 25 years ago, speeds were slow, layer counts were low, dielectric constants and loss tangents were high, design margins were wide, copper roughness didn’t matter, and glass-weave styles didn’t matter. Dielectrics were called “FR-4” and their properties didn’t matter much. A fast PCI bus operated at just 66 MHz. Times have certainly changed.

Bridging the Simulation Tool Divide

04/12/2021 | I-Connect007 Editorial Team
Todd Westerhoff of Siemens EDA recently spoke with the I-Connect007 Editorial Team about the divide between users of high-powered enterprise simulation tools and those who need a more practical tool for everyday use, and how Siemens is working to bridge the gap. Todd also shared his views on why so many engineers do not use simulation, as well as advice for engineers just getting started with simulation tools.

Copyright © 2021 I-Connect007. All rights reserved.