-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRigid-flex: Designing in 3D
In this month’s issue, our expert contributors share their best tips, tricks and techniques for designing rigid-flex circuits. If you’re a rigid board designer considering moving into the 3D world of rigid-flex, this issue is just what the doctor ordered!
Simulation, Analysis, and AI
Getting today’s designs “right the first time” is critical, especially with costly advanced PCBs. Simulation and analysis software tools can help you in the fight to eliminate respins. They’re not magical, but they can predict the future of your design.
Advanced, Complex & Emerging Designs
This month, our contributors focus on designing PCBs with advanced, complex and emerging technologies. We investigate design strategies for boards that are on the cutting edge of technology, or crazily complex, or so new that designers are still writing the rules as they go.
- Articles
- Columns
Search Console
- Links
- Events
||| MENU - design007 Magazine
The Composite Properties of Rigid vs. Multilayer PCBs
June 17, 2015 | Chet GuilesEstimated reading time: 2 minutes

Abstract
Most materials systems used in PWBs (aka PCBs) are composites of resins, fabric substrates and metal cladding. Each of these components has its own unique electrical and mechanical properties that contribute to the final characteristics of the finished laminates, prepregs and fabricated multilayer boards (MLBs). In most cases variables such as glass style and resin content have offsetting impacts on physical vs. electrical properties.
Data sheets often provide data in standard IPC formats, which may look at properties in rigid laminates (nominal 0.062” made using heavyweight glass at 32–40% resin content) rather than thin lams and prepregs used for multilayer PWBs (which more typically average 55% resin content or more). To further complicate the situation, some product lines are manufactured with consistent resin content for all product thicknesses, thus maintaining the dielectric properties while letting the mechanical properties be dictated by the constructions and resin content.
An understanding of what such variations in properties mean and how they relate to what the users will actually encounter is essential to design, manufacturability, assembly and end-use viability. In this presentation we will look specifically at the effect of glass style and resin content on dielectric constant and CTE and discuss how even at the product design level it is important for design engineers to take these into consideration.
Conclusions
In most cases, no single value of dielectric constant or in-plane CTE (representative laminate properties that are impacted by resin content variation—obviously there are others as well, but for purposes of keeping this work manageable, we will focus on these two) will hold for all thicknesses of laminate or build-ups for MLBs. In those cases where either or both are critical, it is necessary to control resin content in both laminate and prepreg to ensure that the finished properties fall within the desired and expected ranges.
In some cases, such as with 85N polyimide and 92ML thermally conductive epoxy products, the specific values of Dk and CTE are less critical than other things such as processibility and design flexibility (as for 85N) or thermal conductivity (for 92ML) and so resin contents are allowed to vary so as to meet these needs.
In other cases either CTE (as in 85NT) or dielectric constant (as for Multiclad HF or 25N/FR) are critical needs, and in those cases the resin contents must be held to controlled limits so that the desired properties are consistently held for most or all of the laminate configurations.
To read this article, which originally appeared in the May 2016 issue of The PCB Design Magazine, click here.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/29/2023 | Andy Shaughnessy, I-Connect007This week’s must-reads cover a little bit of everything: advanced packaging substrates, rigid-flex design, the potential loss of tribal knowledge, ultra HDI processing, and the need for fabricators to begin utilizing Smart systems. In a few weeks, we’ll be attending SMTA International in Minneapolis, and then productronica in Munich. We hope to see you on the road!
Siemens, TSMC Collaborate to Help Mutual Customers Optimize Designs Using Foundry's Newest Advancements
09/29/2023 | SiemensSiemens Digital Industries Software announced new certifications and collaborations with longtime partner TSMC, resulting in the successful qualification of multiple industry-leading Siemens EDA product lines for the foundry’s latest process technologies.
Cadence Expands Support for 3Dblox 2.0 Standard with New System Prototyping Flows
09/29/2023 | Cadence Design Systems, Inc.Cadence Design Systems, Inc. announced the availability of new system prototyping flows based on the Cadence® Integrity™ 3D-IC Platform that support the 3Dblox 2.0 standard.
TSMC Announces Breakthrough Set to Redefine the Future of 3D IC
09/28/2023 | TSMCTSMC announced the new 3Dblox 2.0 open standard and major achievements of its Open Innovation Platform (OIP) 3DFabric Alliance at the TSMC 2023 OIP Ecosystem Forum.
Keysight, Synopsys, and Ansys Accelerate RFIC Semiconductor Design for TSMC
09/28/2023 | Keysight Technologies, Inc.Keysight Technologies, Inc., Synopsys, Inc., and Ansys announced a new reference flow for the TSMC N4PRF, the world's leading semiconductor foundry's advanced 4 nanometer (nm) radio frequency (RF) FinFET process technology.