New Flexible Sensor Holds Potential for Foldable Touch Screens


Reading time ( words)

Picture a tablet that you can fold into the size of a phone and put away in your pocket, or an artificial skin that can sense your body’s movements and vital signs. A new, inexpensive sensor developed at the University of British Columbia could help make advanced devices like these a reality. 

The sensor uses a highly conductive gel sandwiched between layers of silicone that can detect different types of touch, including swiping and tapping, even when it is stretched, folded or bent. This feature makes it suited for foldable devices of the future.

“There are sensors that can detect pressure, such as the iPhone’s 3D Touch, and some that can detect a hovering finger, like Samsung’s AirView. There are also sensors that are foldable, transparent and stretchable. Our contribution is a device that combines all those functions in one compact package,” said researcher Mirza Saquib Sarwar, a PhD student in electrical and computer engineering at UBC. 

The prototype, described in a recent paper in Science Advances, measures 5 cm x 5 cm but could be easily scaled up as it uses inexpensive, widely available materials, including the gel and silicone. 

“It’s entirely possible to make a room-sized version of this sensor for just dollars per square metre, and then put sensors on the wall, on the floor, or over the surface of the body—almost anything that requires a transparent, stretchable touch screen,” said Sarwar. “And because it’s cheap to manufacture, it could be embedded cost-effectively in disposable wearables like health monitors.” 

The sensor could also be integrated in robotic “skins” to make human-robot interactions safer, added John Madden, Sarwar’s supervisor and a professor in UBC’s faculty of applied science.

“Currently, machines are kept separate from humans in the workplace because of the possibility that they could injure humans. If a robot could detect our presence and be ‘soft’ enough that they don’t damage us during an interaction, we can safely exchange tools with them, they can pick up objects without damaging them, and they can safely probe their environment,” said Madden. 

The research was funded by the Natural Sciences and Engineering Research Council of Canada.

Share


Suggested Items

Terahertz Wireless Could Make Spaceborne Satellite Links as Fast as Fiber-Optic Links

02/06/2017 | Panasonic Corporation
Hiroshima University, National Institute of Information and Communications Technology, and Panasonic Corporation announced the development of a terahertz (THz) transmitter capable of transmitting digital data at a rate exceeding 100 gigabits (= 0.1 terabit) per second over a single channel using the 300-GHz band.

The Incredible Loudness of Whispering

09/05/2016 | DARPA
In a vision shared by innovators, entrepreneurs, and planners in both defense and civilian contexts, the skies of the future will be busy with unmanned aerial vehicles (UAVs).

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T



Copyright © 2017 I-Connect007. All rights reserved.